
www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-1999 AmbySoft Inc.

Writing Robust Java Code
The AmbySoft Inc. Coding Standards for Java

v17.01d

Scott W. Ambler
Software Process Mentor

This Version: January 15, 2000

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-1999 AmbySoft Inc.

This page left unintentionally blank.
(yuk yuk yuk)

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-1999 AmbySoft Inc.

Purpose of this White Paper
This white paper describes a collection of standards, conventions, and guidelines for writing solid Java
code. They are based on sound, proven software engineering principles that lead to code that is easy to
understand, to maintain, and to enhance. Furthermore, by following these coding standards your
productivity as a Java developer should increase remarkably – Experience shows that by taking the time to
write high-quality code right from the start you will have a much easier time modifying it during the
development process. Finally, following a common set of coding standards leads to greater consistency,
making teams of developers significantly more productive.

Important Features of This White Paper
• Existing standards from the industry are used wherever possible – You can reuse more than just code.
• The reasoning behind each standard is explained so that you understand why you should follow it.
• Viable alternatives, where available, are also presented along with their advantages and disadvantages

so that you understand the tradeoffs that have been made.
• The standards presented in this white paper are based on real-world experience from numerous object-

oriented development projects. This stuff works in practice, not just theory.
• These standards are based on proven software-engineering principles that lead to improved

development productivity, greater maintainability, and greater enhancability.

 Target Audience
 Professional software developers who are interested in:
• Writing Java code that is easy to maintain and to enhance
• Increasing their productivity
• Working as productive members of a Java development team

Help Me Improve These Standards
Because I welcome your input and feedback, please feel free to email me at scott@ambysoft.com with your
comments and suggestions. Let’s work together and learn from one another.

Acknowledgments
The following people have provided valuable input into the development and improvement of these
standards, and I would like to recognize them for it.

Stephan Marceau Lyle Thompson David Pinn Larry Virden
Eva Greff Wayne Conrad Michael Appelmans William Gilbert
Graham Wright Alex Santos Kiran Addepalli Brian Smith
Larry Allen Dick Salisbury Bruce Conrad Michael Finney
John Pinto Vijay Eluri Carl Zimmerman Hakan Soderstrom
Bill Siggelkow Camille Bell Fredrik Nystrom Cory Radcliff
Kathy Eckman Guy Sharf Scott Harper
Kyle Larson Robert Marshall Peter C.M. Haight
Mark Brouwer Gerard Broeksteeg Helen Gilmore

Scott W. Ambler
January 2000

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-1999 AmbySoft Inc.

This page also left unintentionally blank.
(although now it isn’t quite as funny)

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

i

Table of Contents

1. GENERAL CONCEPTS...1

1.1 WHY CODING STANDARDS ARE IMPORTANT ... 1
1.2 THE PRIME DIRECTIVE .. 1
1.3 WHAT MAKES UP A GOOD NAME .. 2
1.4 GOOD DOCUMENTATION.. 3

1.4.1 The Three Types of Java Comments ...4
1.4.2 A Quick Overview of javadoc..5

1.5 AMBLER’S LAW OF STANDARDS ... 6

2. STANDARDS FOR MEMBER FUNCTIONS..7

2.1 NAMING MEMBER FUNCTIONS.. 7
2.1.1 Naming Accessor Member Functions..7

2.1.1.1 Getters ... 7
2.1.1.1.1 Alternative Naming Convention for Getters – Has and Can.. 8

2.1.1.2 Setters ... 8
2.1.1.3 Constructors .. 8

2.2 MEMBER FUNCTION VISIBILITY ... 9
2.3 DOCUMENTING MEMBER FUNCTIONS ... 9

2.3.1 The Member Function Header..9
2.3.2 Internal Documentation...11

2.4 TECHNIQUES FOR WRITING CLEAN CODE... 12
2.4.1 Document Your Code..12
2.4.2 Paragraph/Indent Your Code...13
2.4.3 Paragraph and Punctuate Multi-Line Statements..13
2.4.4 Use Whitespace in Your Code...14
2.4.5 Follow The Thirty-Second Rule..14
2.4.6 Write Short, Single Command Lines..14
2.4.7 Specify the Order of Operations...14

2.5 JAVA CODING TIPS... 15
2.5.1 Organize Your Code Sensibly ...15
2.5.2 Place Constants on the Left Side of Comparisons..15

3. STANDARDS FOR FIELDS (ATTRIBUTES/PROPERTIES)..16

3.1 NAMING FIELDS.. 16
3.1.1 Use a Full English Descriptor for Field Names...16

3.1.1.1 Alternative – Hungarian Notation .. 16
3.1.1.2 Alternative – Leading or Trailing Underscores .. 17

3.1.2 Naming Components (Widgets) ..17
3.1.2.1 Alternative for Naming Components – Hungarian Notation .. 17
3.1.2.2 Alternative for Naming Components – Postfix-Hungarian Notation....................................... 17

3.1.3 Naming Constants...18
3.1.4 Naming Collections..19

3.1.4.1 Alternative for Naming Collections – The ‘Some’ Approach... 19
3.1.5 Do Not “Hide” Names..19

3.2 FIELD VISIBILITY ... 20
3.3 DOCUMENTING A FIELD ... 21
3.4 THE USE OF ACCESSOR MEMBER FUNCTIONS .. 21

3.4.1 Naming Accessors ...22
3.4.2 Advanced Techniques for Accessors..23

3.4.2.1 Lazy Initialization... 23

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

ii

3.4.2.2 Getters for Constants .. 24
3.4.2.3 Accessors for Collections.. 26
3.4.2.4 Accessing Several Fields Simultaneously ... 26

3.4.3 Visibility of Accessors...27
3.4.4 Why Use Accessors? ..28
3.4.5 Why Shouldn’t You Use Accessors? ...28

3.5 ALWAYS INITIALIZE STATIC FIELDS... 29

4. STANDARDS FOR LOCAL VARIABLES ...30

4.1 NAMING LOCAL VARIABLES... 30
4.1.1 Naming Streams...30
4.1.2 Naming Loop Counters ..30
4.1.3 Naming Exception Objects ..31
4.1.4 Bad Ideas for Naming Local Variables...31

4.2 DECLARING AND DOCUMENTING LOCAL VARIABLES... 32
4.2.1 General Comments About Declaration...32

5. STANDARDS FOR PARAMETERS (ARGUMENTS) TO MEMBER FUNCTIONS................................33

5.1 NAMING PARAMETERS.. 33
5.1.1 Alternative – Prefix Parameter Names with ‘a’ or ‘an’..33
5.1.2 Alternative – Name Parameters Based on Their Type..33
5.1.3 Alternative – Name Parameters The Same as Their Corresponding Fields (if any)34

5.2 DOCUMENTING PARAMETERS ... 34

6. STANDARDS FOR CLASSES, INTERFACES, PACKAGES, AND COMPILATION UNITS35

6.1 STANDARDS FOR CLASSES... 35
6.1.1 Class Visibility...35
6.1.2 Naming Classes ...35
6.1.3 Documenting a Class..36
6.1.4 Class Declarations..37

6.1.4.1 Apply The “final” Keyword Sensibly ... 37
6.1.4.2 Ordering Member Functions and Fields .. 37

6.1.5 Minimize the Public and Protected Interface ..38
6.2 STANDARDS FOR INTERFACES ... 39

6.2.1 Naming Interfaces ...39
6.2.2 Documenting Interfaces ...39

6.3 STANDARDS FOR PACKAGES... 40
6.3.1 Naming Packages ..40
6.3.2 Documenting a Package..40

6.4 STANDARDS FOR COMPILATION UNITS... 41
6.4.1 Naming a Compilation Unit..41
6.4.2 Documenting a Compilation Unit..41

7. MISCELLANEOUS STANDARDS/ISSUES..42

7.1 REUSE ... 42
7.2 USE WILD CARDS WHEN IMPORTING CLASSES.. 42

7.2.1 Alternative – Explicitly Specify Each Imported Class ...42
7.3 OPTIMIZING JAVA CODE... 43
7.4 WRITING JAVA TEST HARNESSES.. 46

8. THE SECRETS OF SUCCESS...47

8.1 USING THESE STANDARDS EFFECTIVELY .. 47
8.2 OTHER FACTORS THAT LEAD TO SUCCESSFUL CODE... 48

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

iii

9. PROPOSED JAVADOC TAGS FOR MEMBER FUNCTIONS...50

10. WHERE TO GO FROM HERE...51

10.1 CREATING YOUR OWN INTERNAL CORPORATE GUIDELINES?.. 51
10.1.1 Using This PDF File...51
10.1.2 Obtaining the Source Document for This File...51

11. SUMMARY..52

11.1 JAVA NAMING CONVENTIONS.. 53
11.2 JAVA DOCUMENTATION CONVENTIONS.. 55

11.2.1 Java Comment Types..55
11.2.2 What To Document..56

11.3 JAVA CODING CONVENTIONS (GENERAL).. 57

GLOSSARY..58

REFERENCES AND SUGGESTED READING...62

12. ABOUT THE AUTHOR...64

13. INDEX...65

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

1

1. General Concepts
I’d like to start this white paper with a discussion of some general concepts that I feel are important for
coding standards. I begin with the importance of coding standards, propose the “Prime Directive” for
standards, and then follow with the factors that lead to good names and good documentation. This section
will set the stage for the rest of this white paper, which covers standards and guidelines for Java coding.

1.1 Why Coding Standards are Important
Coding standards for Java are important because they lead to greater consistency within your code and the
code of your teammates. Greater consistency leads to code that is easier to understand, which in turn
means it is easier to develop and to maintain. This reduces the overall cost of the applications that you
create.

You have to remember that your Java code will exist for a long time, long after you have moved on to other
projects. An important goal during development is to ensure that you can transition your work to another
developer, or to another team of developers, so that they can continue to maintain and enhance your work
without having to invest an unreasonable effort to understand your code. Code that is difficult to
understand runs the risk of being scrapped and rewritten – I wouldn’t be proud of the fact that my code
needed to be rewritten, would you? If everyone is doing their own thing then it makes it very difficult to
share code between developers, raising the cost of development and maintenance.

Inexperienced developers, and cowboys who do not know any better, will often fight having to follow
standards. They claim they can code faster if they do it their own way. Pure hogwash. They MIGHT be
able to get code out the door faster, but I doubt it. Cowboy programmers get hung up during testing when
several difficult-to-find bugs crop up, and when their code needs to be enhanced it often leads to a major
rewrite by them because they’re the only ones who understand their code. Is this the way that you want to
operate? I certainly do not.

1.2 The Prime Directive
No standard is perfect and no standard is applicable to all situations: sometimes you find yourself in a
situation where one or more standards do not apply. This leads me to introduce what I consider to be the
prime directive of standards:

When you go against a standard, document it. All standards, except for this one, can be broken. If
you do so, you must document why you broke the standard, the potential implications of breaking
the standard, and any conditions that may/must occur before the standard can be applied to this
situation.

The bottom line is that you need to understand each standard, understand when to apply them, and just as
importantly when not to apply them.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

2

1.3 What Makes Up a Good Name
We will be discussing naming conventions throughout the standards, so let’s set the stage with a few
basics:

1. Use full English descriptors1 that accurately describe the variable/field/class/… For example, use
names like firstName, grandTotal, or CorporateCustomer. Although names like x1, y1, or fn are easy
to type because they’re short, they do not provide any indication of what they represent and result in
code that is difficult to understand, maintain, and enhance (Nagler, 1995; Ambler, 1998a).

2. Use terminology applicable to the domain. If your users refer to their clients as customers, then use the

term Customer for the class, not Client. Many developers will make the mistake of creating generic
terms for concepts when perfectly good terms already exist in the industry/domain.

3. Use mixed case to make names readable. You should use lower case letters in general, but capitalize

the first letter of class names and interface names, as well as the first letter of any non-initial word
(Kanerva, 1997).

4. Use abbreviations sparingly, but if you do so then use them intelligently. This means you should

maintain a list of standard short forms (abbreviations), you should choose them wisely, and you should
use them consistently. For example, if you want to use a short form for the word “number,” then
choose one of nbr, no, or num, document which one you chose (it doesn’t really matter which one), and
use only that one.

5. Avoid long names (< 15 characters is a good idea). Although the class name

PhysicalOrVirtualProductOrService might seem to be a good class name at the time (OK, I’m
stretching it on this example) this name is simply too long and you should consider renaming it to
something shorter, perhaps something like Offering (NPS, 1996).

6. Avoid names that are similar or differ only in case. For example, the variable names persistentObject

and persistentObjects should not be used together, nor should anSqlDatabase and anSQLDatabase
(NPS, 1996).

7. Capitalize the first letter of standard acronyms . Names will often contain standard abbreviations, such
as SQL for Standard Query Language. Names such as sqlDatabase for an attribute, or SqlDatabase for a
class, are easier to read than sQLDatabase and SQLDatabase.

1 I use the term “full English descriptor” throughout this document, but what I really mean is “full [insert
your language here] descriptor”, so if the spoken language of your team is French then use full French
descriptors everywhere.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

3

1.4 Good Documentation
We will also be discussing documentation conventions, so let’s discuss some of the basics first:

1. Comments should add to the clarity of your code. The reason why you document your code is to make
it more understandable to you, your coworkers, and to any other developer who comes after you
(Nagler, 1995).

2. If your program isn’t worth documenting, it probably isn’t worth running (Nagler, 1995). What can I

say, Nagler hit the nail on the head with this one.

3. Avoid decoration, i.e. do not use banner-like comments. In the 1960s and 1970s COBOL programmers

got into the habit of drawing boxes, typically with asterisks, around their internal comments (NPS, 1996).
Sure, it gave them an outlet for their artistic urges, but frankly it was a major waste of time that added
little value to the end product. You want to write clean code, not pretty code. Furthermore, because
many of the fonts used to display and print your code are proportional, and many aren’t, you can’t line
up your boxes properly anyway.

4. Keep comments simple. Some of the best comments I have ever seen are simple, point-form notes. You

do not have to write a book, you just have to provide enough information so that others can
understand your code.

5. Write the documentation before you write the code. The best way to document code is to write the

comments before you write the code. This gives you an opportunity to think about how the code will
work before you write it and will ensure that the documentation gets written. Alternatively, you should
at least document your code as you write it. Because documentation makes your code easier to
understand you are able to take advantage of this fact while you are developing it. The way I look at it,
if you are going to invest the time writing documentation you should at least get something out of it
(Ambler, 1998a).

6. Document why something is being done, not just what. Fundamentally, I can always look at a piece of

code and figure out what it does. For example, I can look at the code in Example 1 below and figure out
that a 5% discount is being given on orders of $1,000 dollars or more. Why is this being done? Is there
a business rule that says that large orders get a discount? Is there a limited-time special on large orders
or is it a permanent program? Was the original programmer just being generous? I do not know unless
it is documented somewhere, either in the source code itself or in an external document (Ambler, 1998a).

if (grandTotal >= 1000.00)
{

grandTotal = grandTotal * 0.95;
}
Example 1.1

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

4

1.4.1 The Three Types of Java Comments
Java has three styles of comments: Documentation comments start with /** and end with */, C-style
comments which start with /* and end with */, and single-line comments that start with // and go until the
end of the source-code line. In the chart below is a summary of my suggested use for each type of
comment, as well as several examples.

Comment Type Usage Example
Documentation Use documentation comments

immediately before declarations of
interfaces, classes, member functions,
and fields to document them.
Documentation comments are processed
by javadoc, see below, to create external
documentation for a class.

/**
 Customer – A customer is any
 person or organization that we
 sell services and products to.

 @author S.W. Ambler
*/

C style Use C-style comments to document out
lines of code that are no longer
applicable, but that you want to keep just
in case your users change their minds, or
because you want to temporarily turn it
off while debugging.

/*
 This code was commented out
 by J.T. Kirk on Dec 9, 1997
 because it was replaced by the
 preceding code. Delete it after two
 years if it is still not applicable.

 . . . (the source code)
*/

Single line Use single line comments internally
within member functions to document
business logic, sections of code, and
declarations of temporary variables.

// Apply a 5% discount to all invoices
// over $1000 as defined by the Sarek
// generosity campaign started in
// Feb. of 1995.

The important thing is that your organization should set a standard as to how C-style comments and single-
line comments are to be used, and then to follow that standard consistently. Use one type to document
business logic and use the other to document out old code. I prefer using single-line comments for
business logic because I can put the documentation on the same line as the code (this is called endlining
and sometimes inlining). I then use C-style comments for documenting out old code because I can comment
out several lines at once and because C-style looks very similar to documentation comments I rarely use
them so as to avoid confusion.

Tip – Beware Endline Comments

McConnell (1993) argues strongly against the use of endline comments, also known as inline comments or
end of line comments. He points out that the comments have to be aligned to the right of the code so that
they do not interfere with the visual structure of the code. As a result they tend to be hard to format, and
that “if you use many of them, it takes time to align them. Such time is not spent learning more about the
code; it is dedicated solely to the tedious task of pressing the spacebar or the tab key.” He also points out
that endline comments are also hard to maintain because when the code on the line grows it bumps the
endline comment out, and that if you are aligning them you have to do the same for the rest of them. My
advice, however, is to not waste your time aligning endline comments.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

5

1.4.2 A Quick Overview of javadoc
Included in Sun’s Java Development Kit (JDK) is a program called javadoc that processes Java code files
and produces external documentation, in the form of HTML files, for your Java programs. I think that
javadoc is a great utility, but at the time of this writing it does have its limitations. First, it supports a limited
number of tags, reserved words that mark the beginning of a documentation section. The existing tags are a
very good start but I feel are not sufficient for adequately documenting your code. I’ll expand upon this
statement later. For now, I present a brief overview of the current javadoc tags in the chart below, and will
refer you to the JDK javadoc documentation for further details.

Tag Used for Purpose
@author name Interfaces,

Classes,
Interfaces

Indicates the author(s) of a given piece of code.
One tag per author should be used.

@deprecated Interfaces,
Classes,
Member
Functions

Indicates that the API for the class… has been
deprecated and therefore should not be used any
more.

@exception name description Member
Functions

Describes the exceptions that a member function
throws. You should use one tag per exception and
give the full class name for the exception.

@param name description Member
Functions

Used to describe a parameter passed to a member
function, including its type/class and its usage.
Use one tag per parameter.

@return description Member
Functions

Describes the return value, if any, of a member
function. You should indicate the type/class and
the potential use(s) of the return value.

@since Interfaces,
Classes, Member
Functions

Indicates how long the item has existed, i.e. since
JDK 1.1

@see ClassName Classes,
Interfaces,
Member
Functions, Fields

Generates a hypertext link in the documentation to
the specified class. You can, and probably should,
use a fully qualified class name.

@see ClassName#member
functionName

Classes,
Interfaces,
Member
Functions, Fields

Generates a hypertext link in the documentation to
the specified member function. You can, and
probably should, use a fully qualified class name.

@version text Classes,
Interfaces

Indicates the version information for a given piece
of code.

The way that you document your code has a huge impact both on your own productivity and on the
productivity of everyone else who later maintains and enhances it. By documenting your code early in the
development process you become more productive because it forces you to think through your logic before
you commit it to code. Furthermore, when you revisit code that you wrote days or weeks earlier you can
easily determine what you were thinking when you wrote it – it is documented for you already.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

6

1.5 Ambler’s Law of Standards

Whenever possible, reuse standards and guidelines, don’t reinvent them. The greater the scope of the
standards and guidelines the more desirable they are, industry standards are more desirable than
organizational standards which in turn are more desirable than project standards. Projects aren’t developed
in a vacuum and organizations do not operate in a vacuum either, therefore the greater the scope of the
standard the greater the chance that somebody else is also following it, making it that much easier for you to
work together with them.

Ambler’s Law of Standards

Industry standards > organizational standards > project standards >
personal standards > no standards

Blatant Advertising – Purchase The Elements of Java Style today!
This book (Vermeulen et. al., 2000) presents a collection of strategies for
writing superior Java source code. This book presents a wider range of
guidelines than what is presented here in this paper, and more importantly
presents excellent source code examples. It covers many topics that are not
covered in this paper, such as type safety issues, exception handling,
assertions, and concurrency issues such as synchronization. This paper was
combined with Rogue Wave’s internal coding standards and then together
were evolved to become The Elements of Java Style, so you should find the
book to be an excellent next step in your Java learning process. Visit
http://www.ambysoft.com/elementsJavaStyle.html for more details.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

7

2. Standards For Member Functions
I’m a firm believer in maximizing the productivity of systems professionals. Because I also recognize that an
application spends the majority of its existence being maintained, not developed, I am very interested in
anything that can help to make my code easier to maintain and to enhance, as well as to develop. Never
forget that the code that you write today may still be in use many years from now and will likely be
maintained and enhanced by somebody other than you. You must strive to make your code as “clean” and
understandable as possible, because these factors make it easier to maintain and to enhance.

In this section we will concentrate on four topics:
• Naming conventions
• Visibility
• Documentation conventions
• Techniques for writing clean Java code

2.1 Naming Member Functions
Member Functions should be named using a full English description, using mixed case with the first letter of
any non-initial word capitalized. It is also common practice for the first word of a member function name to
be a strong, active verb.

Examples:
openAccount()
printMailingLabel()
save()
delete()

This convention results in member functions whose purpose can often be determined just by looking at its
name. Although this convention results in a little extra typing by the developer, because it often results in
longer names, this is more than made up for by the increased understandability of your code.

2.1.1 Naming Accessor Member Functions
We will discuss accessors, member functions that get and set the values of fields (fields/properties) in
greater detail in chapter 3. The naming conventions for accessors, however, are summarized below.

2.1.1.1 Getters
Getters are member functions that return the value of a field. You should prefix the word ‘get’ to the name of
the field, unless it is a boolean field and then you prefix ‘is’ to the name of the field instead of ‘get.’

Examples:
getFirstName()
getAccountNumber()
getLostEh()
isPersistent()
isAtEnd()

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

8

By following this naming convention you make it obvious that a member function returns a field of an
object, and for boolean getters you make it obvious that it returns true or false. Another advantage of this
standard is that it follows the naming conventions used by the beans development kit (BDK) for getter
member functions (DeSoto, 1997). The main disadvantage is that ‘get’ is superfluous, requiring extra typing.

2.1.1.1.1 Alternative Naming Convention for Getters – Has and Can
A viable alternative, based on proper English conventions, is to use the prefix ‘has’ or ‘can’ instead of ‘is’
for boolean getters. For example, getter names such as hasDependents() and canPrint() make a lot of sense
when you are reading the code. The problem with this approach is that the BDK will not pick up on this
naming strategy (yet). You could rename these member functions isBurdenedWithDependents() and
isPrintable(). ☺

2.1.1.2 Setters
Setters, also known as mutators, are member functions that modify the values of a field. You should prefix
the word ‘set’ to the name of the field, regardless of the field type.

Examples:
setFirstName(String aName)
setAccountNumber(int anAccountNumber)
setReasonableGoals(Vector newGoals)
setPersistent(boolean isPersistent)
setAtEnd(boolean isAtEnd)

Following this naming convention you make it obvious that a member function sets the value of a field of an
object. Another advantage of this standard is that it follows the naming conventions used by the beans
development kit (BDK) for setter member functions (DeSoto, 1997). The main disadvantage is that ‘set’ is
superfluous, requiring extra typing.

2.1.1.3 Constructors
Constructors are member functions that perform any necessary initialization when an object is first created.
Constructors are always given the same name as their class. For example, a constructor for the class
Customer would be Customer(). Note that the same case is used.

Examples:
Customer()
SavingsAccount()
PersistenceBroker()

This naming convention is set by Sun and must be strictly adhered to.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

9

2.2 Member Function Visibility
For a good design where you minimize the coupling between classes, the general rule of thumb is to be as
restrictive as possible when setting the visibility of a member function. If member function doesn’t have to
be public then make it protected, and if it doesn’t have to be protected then make it private.

Visibility Description Proper Usage
public A public member function can be invoked by

any other member function in any other
object or class.

When the member function must be
accessible by objects and classes outside of
the class hierarchy in which the member
function is defined.

protected A protected member function can be
invoked by any member function in the class
in which it is defined or any subclasses of
that class.

When the member function provides
behavior that is needed internally within the
class hierarchy but not externally.

private A private member function can only be
invoked by other member functions in the
class in which it is defined, but not in the
subclasses.

When the member function provides
behavior that is specific to the class. Private
member functions are often the result of
refactoring, also known as reorganizing, the
behavior of other member functions within
the class to encapsulate one specific
behavior.

No visibility is indicated. This is called
default or package visibility, and is
sometimes referred to as friendly visibility.
The member function is effectively public to
all other classes within the same package,
but private to classes external to the
package.

This is an interesting feature, but be careful
with its use. I use it when I’m building
domain components (Ambler, 1998b),
collections of classes that implement a
cohesive business concept such as
“Customer”, to restrict access to only the
classes within the component/package.

2.3 Documenting Member Functions
The manner in which you document a member function will often be the deciding factor as to whether or not
it is understandable, and therefore maintainable and extensible.

2.3.1 The Member Function Header
Every Java member function should include some sort of header, called member function documentation, at
the top of the source code that documents all of the information that is critical to understanding it. This
information includes, but is not limited to the following:

1. What and why the member function does what it does. By documenting what a member function does
you make it easier for others to determine if they can reuse your code. Documenting why it does
something makes it easier for others to put your code into context. You also make it easier for others to
determine whether or not a new change should actually be made to a piece of code (perhaps the reason
for the new change conflicts with the reason why the code was written in the first place).

2. What a member function must be passed as parameters. You also need to indicate what parameters, if

any, must be passed to a member function and how they will be used. This information is needed so

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

10

that other programmers know what information to pass to a member function. The javadoc @param
tag, discussed in section 1.4.2, is used for this.

3. What a member function returns. You need to document what, if anything, a member function returns

so that other programmers can use the return value/object appropriately. The javadoc @return tag,
discussed in section 1.4.2, is used for this.

4. Known bugs. Any outstanding problems with a member function should be documented so that other

developers understand the weaknesses/difficulties with the member function. If a given bug is
applicable to more than one member function within a class, then it should be documented for the class
instead.

5. Any exceptions that a member function throws. You should document any and all exceptions that a

member function throws so that other programmers know what their code will need to catch. The
javadoc @exception tag, discussed in section 1.4.2, is used for this.

6. Visibility decisions. If you feel that your choice of visibility for a member function will be questioned

by other developers, perhaps you’ve made a member function public even though no other objects
invoke the member function yet, then you should document your decision. This will help to make your
thinking clear to other developers so that they do not waste time worrying about why you did
something questionable.

7. How a member function changes the object. If a member function changes an object, for example the

withdraw() member function of a bank account modifies the account balance then this needs to be
indicated. This information is needed so that other Java programmers know exactly how a member
function invocation will affect the target object.

8. Include a history of any code changes. Whenever a change is made to a member function you should

document when the change was made, who made it, why it was made, who requested the change, who
tested the change, and when it was tested and approved to be put into production. This history
information is critical for the future maintenance programmers who are responsible for modifying and
enhancing the code. Note: This information really belongs in your software configuration
management/version control system, not the source code itself! If you aren’t using these sorts of tools
(and you really should) then put this information into your code.

9. Examples of how to invoke the member function if appropriate. One of the easiest ways to determine

how a piece of code works it to look at an example. Consider including an example or two of how to
invoke a member function.

10. Applicable preconditions and postconditions. A precondition is a constraint under which a member

function will function properly, and a postcondition is a property or assertion that will be true after a
member function is finished running (Meyer, 1988). In many ways preconditions and postconditions
describe the assumptions that you have made when writing a member function (Ambler, 1998a),
defining exactly the boundaries of how a member function is used.

11. All concurrency issues. Concurrency is a new and complex concept for many developers and at best it

is an old and complex topic for experienced concurrent programmers. The end result is that if you use
the concurrent programming features of Java then you need to document it thoroughly. Lea (1997)
suggests that when a class includes both synchronized and unsynchronized member functions you
must document the execution context that a member function relies on, especially when it requires
unrestricted access so that other developers can use your member functions safely. When a setter, a
member function that updates a field, of a class that implements the Runnable interface is not
synchronized then you should document your reason(s) why. Finally, if you override or overload a
member function and change its synchronization you should also document why.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

11

The important thing is that you should document something only when it adds to the clarity of your code.
You wouldn’t document all of the factors described above for each and every member function because not
all factors are applicable to every member function. You would however document several of them for each
member function that you write. In chapter 9, I propose several new documentation tags for javadoc to
support the factors listed above.

2.3.2 Internal Documentation
In addition to the member function documentation, you also need to include comments within your member
functions to describe your work. The goal is to make your member function easier to understand, to
maintain, and to enhance.

There are two types of comments that you should use to document the internals of your code: C-style
comments (/* … */) and single-line comments (//). As discussed in section 1.4.1, you should seriously
consider choosing one style of comments for documenting the business logic of your code and one for
commenting out unneeded code. My suggestion is to use single-line comments for your business logic,
because you can use this style of comments both for full comment lines and for endline comments that
follow at the end of a line of code. I use C-style comments to document out lines of unneeded code because
I can easily take out several lines with only one comment. Furthermore, because C-style comments look so
much like documentation comments I feel that their use can be confusing, taking away from the
understandability of my code. Therefore I use them sparingly.

Internally, you should always document:
1. Control structures. Describe what each control structure does, such as comparison statements and

loops. You shouldn’t have to read all the code in a control structure to determine what it does, instead
you should just have to look at a one or two line comment immediately preceding it.

2. Why, as well as what, the code does. You can always look at a piece of code and figure out what it

does, but for code that isn’t obvious you can rarely determine why it is done that way. For example,
you can look at a line of code and easily determine that a 5% discount is being applied to the total of an
order. That is easy. What isn’t easy is figuring out WHY that discount is being applied. Obviously
there is some sort of business rule that says to apply the discount, so that business rule should at least
be referred to in your code so that other developers can understand why your code does what it does.

3. Local variables. Although we will discuss this in greater detail in chapter 4, each local variable defined

in a member function should be declared on its own line of code and should usually have an endline
comment describing its use.

4. Difficult or complex code. If you find that you either can’t rewrite it, or do not have the time, then you

must document thoroughly any complex code in a member function. My general rule of thumb is that if
your code isn’t obvious, then you need to document it.

5. The processing order. If there are statements in your code that must be executed in a defined order

then you should ensure that this fact gets documented (Ambler, 1998a). There’s nothing worse than
making a simple modification to a piece of code only to find that it no longer works, then spending
hours looking for the problem only to find that you’ve gotten things out of order.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

12

Tip – Document Your Closing Braces

Every so often you will find that you have control structures within control structures within control
structures. Although you should avoid writing code like this, sometimes you find that it is better to write it
this way. The problem is that it becomes confusing which ending brace, the } character, belongs to which
control structure. The good news is that some code editors support a feature that when you select a open
brace it will automatically highlight the corresponding closing one, the bad news is that not every editor
supports this. I have found that by marking the ending braces with an endline comment such as //end if,
//end for, //end switch, … makes my code easier to understand.

Given the choice, however, I would rather use a more sophisticated editor.

Blatant Advertising – Purchase The Object Primer, 2nd Edition (late Spring of 2000)!
The Object Primer is a straightforward, easy to understand introduction to
object-oriented concepts, requirements, analysis, and design techniques
applying the techniques of the Unified Modeling Language (UML). The
Object Primer goes further to show you how to move from object modeling to
object-oriented programming, providing Java examples, and describes the
techniques of the Full Lifecycle Object-Oriented Testing (FLOOT)
methodology to enable you to test all of your development artifacts. It also
puts this material in the context of the leading software processes, including
the enhanced lifecycle for the Unified Process, the process patterns of the
Object-Oriented Software Process (OOSP), and the best practices Extreme
Programming (XP). Visit http://www.ambysoft.com/theObjectPrimer.html for
more details.

2.4 Techniques for Writing Clean Code
In this section we will cover several techniques that help to separate the professional developers from the
hack coders. These techniques are:
• Document your code
• Paragraph your code
• Paragraph and punctuate multi-line statements
• Use whitespace
• Follow the thirty-second rule
• Specify the order of message sends
• Write short, single command lines

2.4.1 Document Your Code
Remember, if your code isn’t worth documenting then it isn’t worth keeping (Nagler, 1995). When you
apply the documentation standards and guidelines proposed in this paper appropriately you can greatly
enhance the quality of your code.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

13

2.4.2 Paragraph/Indent Your Code
One way to improve the readability of a member function is to paragraph it, or in other words indent your
code within the scope of a code block. Any code within braces, the { and } characters, forms a block. The
basic idea is that the code within a block should be uniformly indented one unit2. To ensure consistency,
start your member function and class declarations in column 1 (NPS, 1996).

The Java convention appears to be that the open brace is to be put on the line following the owner of the
block and that the closing brace should be indented one level. The important thing as pointed out by Laffra
(1997) is that your organization chooses an indentation style and sticks to it. My advice is to use the same
indentation style that your Java development environment uses for the code that it generates.

2.4.3 Paragraph and Punctuate Multi-Line Statements
A related issue to paragraphing your code occurs when a single statement requires several lines of code, an
example of which appears below.

Example:
BankAccount newPersonalAccount = AccountFactory

createBankAccountFor(currentCustomer, startDate,
initialDeposit, branch);

Notice how I indent the second and third lines one unit, visibly indicating that they are still a part of the
preceding line. Also notice how the final comma in the second line immediately follows the parameter and is
not shown on the following line (word processors work this way too).

2 There seems to be a debate raging about what a unit is, but the only unit that makes sense to me is a
horizontal tab. It requires the least amount of typing, one entire keystroke, while at the same time providing
enough of an indent to be noticeable. I have always found that using spaces is problematic, some people
use two, some three, some four, and so on. Tabs are much easier. I have been informed that some editors
convert tabs to spaces (yuck!) and that others do not support tabs at all. My only response is to invest in a
decent code editor.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

14

2.4.4 Use Whitespace in Your Code
A few blank lines or spaces, called whitespace, added to your Java code can help to make it much more
readable by breaking it up into small, easy-to-digest sections (NPS, 1996; Ambler, 1998a). The Vision 2000
team (1996) suggests using a single blank line to separate logical groups of code, such as control structures,
with two blank lines to separate member function definitions. Without whitespace it is very difficult to read
and to understand. In the code below notice how the readability second version of the code is improved by
the addition of a blank line between setting the counter and the lines of code to calculate the grand total.
Also notice how the addition of spaces around the operators and after the comma also increase the
readability of the code. Small things, yes, but it can still make a big difference.

Code examples:
counter=1;
grandTotal=invoice.total()+getAmountDue();
grandTotal=Discounter.discount(grandTotal,this);
counter = 1;

grandTotal = invoice.total() + getAmountDue();
grandTotal = Discounter.discount(grandTotal, this);

2.4.5 Follow The Thirty-Second Rule
I have always believed that another programmer should be able to look at your member function and be able
to fully understand what it does, why it does it, and how it does it in less than 30 seconds. If he or she can’t
then your code is too difficult to maintain and should be improved. Thirty seconds, that’s it. A good rule of
thumb suggested by Stephan Marceau is that if a member function is more than a screen then it is probably
too long.

2.4.6 Write Short, Single Command Lines
Your code should do one thing per line (Vision, 1996; Ambler, 1998a). Back in the days of punch cards it
made sense to try to get as much functionality as possible on a single line of code, but considering it has
been over fifteen years since I have even seen a punch card I think we can safely rethink this approach to
writing code. Whenever you attempt to do more than one thing on a single line of code you make it harder
to understand. Why do this? We want to make our code easier to understand so that it is easier to maintain
and enhance. Just like a member function should do one thing and one thing only, you should only do one
thing on a single line of code. Furthermore, you should write code that remains visible on the screen
(Vision, 1996). My general rule of thumb is that you shouldn’t have to scroll your editing window to the
right to read the entire line of code, including code that uses endline comments.

2.4.7 Specify the Order of Operations
A really easy way to improve the understandability of your code is to use parenthesis, also called “round
brackets,” to specify the exact order of operations in your Java code (Nagler, 1995; Ambler, 1998a). If I have
to know the order of operations for a language to understand your source code then something is seriously
wrong. This is mostly an issue for logical comparisons where you AND and OR several other comparisons
together. Note that if you use short, single command lines as suggested above then this really shouldn’t
crop up as an issue.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

15

2.5 Java Coding Tips
This section contains a collection of guidelines that I have found useful over the years to increase the
quality of my source code.

2.5.1 Organize Your Code Sensibly
Compare the two code examples presented below. The one of the right is easier to understand because the
statements involving anObject have been placed together. The code still does the same thing, it’s just a
little easier to read now (note that if aCounter had been passed as a parameter in message3() then this
change couldn’t have been made).

Code Examples:
anObject.message1();
anObject.message2();
aCounter = 1;
anObject.message3();

anObject.message1();
anObject.message2();
anObject.message3();

 aCounter = 1;

2.5.2 Place Constants on the Left Side of Comparisons
Consider the code examples below. Although they are both equivalent, at least on first inspection, the code
on the left compiles and the code on the right does not. Why? Because the second if statement isn’t doing
a comparison, it’s doing assignment – you can’t assign a new value to a constant value such as 0. This can
be a difficult bug to find in your code (at least without a sophisticated testing tool). By placing constants
on the left side of comparisons you achieve the same effect and the compiler will catch it if you accidentally
use assignment instead of comparison.

Code Examples:
if (something == 1) {…}

if (x = 0) { …}

if (1 == something) {…}

if (0 = x) { …}

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

16

3. Standards for Fields (Attributes/Properties)
Throughout this white paper I will use the term field to refer to a attribute, which the Beans Development Kit
(BDK) calls a property (DeSoto, 1997). A field is a piece of data that describes an object or class. Fields
may be a base data type like a string or a float, or may be an object such as a customer or bank account.

3.1 Naming Fields

3.1.1 Use a Full English Descriptor for Field Names
You should use a full English descriptor to name your fields (Gosling, Joy, Steele, 1996; Ambler 1997) to
make it obvious what the field represents. Fields that are collections, such as arrays or vectors, should be
given names that are plural to indicate that they represent multiple values.

Examples:
firstName
zipCode
unitPrice
discountRate
orderItems
sqlDatabase

If the name of the field begins with an acronym, such as sqlDatabase, then the acronym (in this case ‘sql’)
should be completely in lowercase. Do not use sQLDatabase for the name.

3.1.1.1 Alternative – Hungarian Notation
The “Hungarian Notation” (McConnell, 1993) is based on the principle that a field should be named using
the following approach: xEeeeeeEeeeee where x indicates the component type and EeeeeEeeeee is the full
English descriptor.

Examples:
sFirstName
iZipCode
lUnitPrice
lDiscountRate
cOrderItems

The main advantage is that this is an industry standard common for C++ code so many people already
follow it. Furthermore, developers can quickly judge from the name of the variable its type and how it is
used. The main disadvantages are that the prefix notation becomes cumbersome when you have a lot of the
same type of attribute, you break from the full English descriptor naming convention, and your accessor
method naming strategy is impacted (see Section 3.4.1).

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

17

3.1.1.2 Alternative – Leading or Trailing Underscores
A common approach, coming from the C++ community, is to include either a leading or trailing underscore to
the field name.

Examples:
_firstName
firstName_

The advantage of this approach is that you immediately know that you are dealing with a field, avoiding the
name hiding issue with parameters and locals (although, once again, name hiding in this case isn’t an issue
if you use accessor methods). The main disadvantage is that this is not the standard set by Sun.

3.1.2 Naming Components (Widgets)
For names of components (interface widgets) you should use a full English descriptor postfixed by the
widget type3. This makes it easy for you to identify the purpose of the component as well as its type,
making it easier to find each component in a list (many visual programming environments provide lists of all
components in an applet or application and it can be confusing when everything is named button1, button2,
…).

Examples:
okButton
customerList
fileMenu
newFileMenuItem

3.1.2.1 Alternative for Naming Components – Hungarian Notation

Examples:
pbOk
lbCustomer
mFile
miNewFile

The advantages are the same as described above in Section 3.1.1.1. The main disadvantage is that the prefix
notation becomes cumbersome when you have a lot of the same type of widget.

3.1.2.2 Alternative for Naming Components – Postfix-Hungarian Notation
Basically a combination of the other two alternatives, it results in names such as okPb, customerLb, fileM,
and newFileMi . The main advantage is that the name of the component indicates the widget type and that
widgets of the same type aren’t grouped together in an alphabetical list. The main disadvantage is that you
still aren’t using a full English description, making the standard harder to remember because it deviates from
the norm.

3 This is my own standard and not one promoted by Sun.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

18

Tip – Set Component Name Standards

Whatever convention you choose, you’ll want to create a list of “official” widget names. For example, when
naming buttons do you use Button or PushButton, b or pb? Create a list and make it available to every Java
developer in your organization.

3.1.3 Naming Constants
In Java, constants, values that do not change, are typically implemented as static final fields of classes.
The recognized convention is to use full English words, all in uppercase, with underscores between the
words (Gosling, Joy, Steele, 1996; Sandvik, 1996; NPS, 1996).

Examples:
MINIMUM_BALANCE
MAX_VALUE
DEFAULT_START_DATE

The main advantage of this convention is that it helps to distinguish constants from variables. We will see
later in the document that you can greatly increase the flexibility and maintainability of your code by not
defining constants, instead you should define getter member functions that return the value of constants.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

19

3.1.4 Naming Collections
A collection, such as an array or a vector, should be given a pluralized name representing the types of
objects stored by the array. The name should be a full English descriptor with the first letter of all non-initial
words capitalized.

Examples:
customers
orderItems
aliases

The main advantage of this convention is that it helps to distinguish fields that represent multiple values
(collections) from those that represent single values (non-collections).

3.1.4.1 Alternative for Naming Collections – The ‘Some’ Approach
A non-standard approach, although an interesting one, is to prefix the name of a collection with ‘some’.

Examples:
someCustomers
someOrderItems
someAliases

3.1.5 Do Not “Hide” Names
Name hiding refers to the practice of naming a local variable, argument, or field the same (or similar) as that
of another one of greater scope. For example, if you have a field called firstName do not create a local
variable or parameter called firstName, or anything close to it like firstNames or fistName (hey, maybe some
people name their fists, personally I refer to mine as “left” and “right” <grin>). Try to avoid this as it makes
your code difficult to understand and prone to bugs because other developers, or you, will misread your
code while they are modifying it and make difficult to detect errors.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

20

3.2 Field Visibility
The Vision team (1996) suggests that fields not be declared public for reasons of encapsulation, but I would
go further to state that all fields should be declared private. When fields are declared protected there is the
possibility of member functions in subclasses to directly access them, effectively increasing the coupling
within a class hierarchy. This makes your classes more difficult to maintain and to enhance, therefore it
should be avoided. Fields should never be accessed directly, instead accessor member functions (see
below) should be used.

Visibility Description Proper Usage
public A public field can be accessed by any other

member function in any other object or
class.

Do not make fields public.

protected A protected field can be accessed by any
member function in the class in which it is
declared or by any member functions
defined in subclasses of that class.

Do not make fields protected.

private A private field can only be accessed by
member functions in the class in which it is
declared, but not in the subclasses.

All fields should be private and be accessed
by getter and setter member functions
(accessors).

For fields that are not persistent (they will not be saved to permanent storage) you should mark them as
either static or transient (DeSoto, 1997). This makes them conform to the conventions of the BDK.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

21

3.3 Documenting a Field
Every field should be documented well enough so that other developers can understand it. To be effective,
you need to document:

1. Its description. You need to describe a field so that people know how to use it.

2. Document all applicable invariants. Invariants of a field are the conditions that are always true about it.

For example, an invariant about the field dayOfMonth might be that its value is between 1 and 31
(obviously you could get far more complex with this invariant, restricting the value of the field based on
the month and the year). By documenting the restrictions on the value of a field you help to define
important business rules, making it easier to understand how your code works (or at least should work).

3. Examples. For fields that have complex business rules associated with them you should provide

several example values so as to make them easier to understand. An example is often like a picture: it is
worth a thousand words.

4. Concurrency issues. Concurrency is a new and complex concept for many developers, actually, at

best it is an old and complex topic for experienced concurrent programmers. The end result is that if
you use the concurrent programming features of Java then you need to document it thoroughly.

5. Visibility decisions. If you’ve declared a field to be anything but private then you should document

why you have done so. Field visibility is discussed in section 3.2 above, and the use of accessor
member functions to support encapsulation is covered in section 3.4 below. The bottom line is that you
better have a really good reason for not declaring a variable as private.

3.4 The Use of Accessor Member Functions
In addition to naming conventions, the maintainability of fields is achieved by the appropriate use of
accessor member functions, member functions that provide the functionality to either update a field or to
access its value. Accessor member functions come in two flavors: setters (also called mutators) and
getters. A setter modifies the value of a variable, whereas a getter obtains it for you.

Although accessor member functions used to add overhead to your code, Java compilers are now optimized
for their use, this is no longer true. Accessors help to hide the implementation details of your class. By
having at most two control points from which a variable is accessed, one setter and one getter, you are able
to increase the maintainability of your classes by minimizing the points at which changes need to be made.
Optimization of Java code is discussed in section 7.3.

One of the most important standards that your organization can enforce is the use of accessors. Some
developers do not want to use accessor member functions because they do not want to type the few extra
keystrokes required (for example, for a getter you need to type in ‘get’ and ‘()’ above and beyond the name
of the field). The bottom line is that the increased maintainability and extensibility from using accessors
more than justifies their use.

Tip – Accessors Are The Only Place To Access Fields

A key concept with the appropriate use of accessor member functions is that the ONLY member functions
that are allowed to directly work with a field are the accessor member functions themselves. Yes, it is
possible for directly access a private field within the member functions of the class in which the field is
defined but you do not want to do so because you would increase the coupling within your class.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

22

3.4.1 Naming Accessors
Getter member functions should be given the name ‘get’ + field name, unless the field represents a boolean
(true or false) and then the getter is given the name ‘is’ + field name. Setter member functions should be
given the name ‘set’ + field name, regardless of the field type (Gosling, Joy & Steele, 1996; DeSoto, 1997).
Note that the field name is always in mixed case with the first letter of all words capitalized. This naming
convention is used consistently within the JDK and is what is required for beans development.

Examples:

Field Type Getter name Setter name
firstName string getFirstName() setFirstName()
address SurfaceAddress object getAddress() setAddress()
persistent boolean isPersistent() setPersistent()
customerNumber int getCustomerNumber() setCustomerNumber()
orderItems Array of OrderItem

objects
getOrderItems() setOrderItems()

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

23

3.4.2 Advanced Techniques for Accessors
Accessors can be used for more than just getting and setting the values of instance fields. In this section
we will discuss how to increase the flexibility of your code by using accessors to:
• Initialize the values of fields
• Access constant values
• Access collections
• Access several fields simultaneously

3.4.2.1 Lazy Initialization
Variables need to be initialized before they are accessed. There are two lines of thought to initialization:
Initialize all variables at the time the object is created (the traditional approach) or initialize at the time of first
use. The first approach uses special member functions that are invoked when the object is first created,
called constructors. Although this works, it often proves to be error prone. When adding a new variable
you can easily forget to update the constructor(s). An alternative approach is called lazy initialization
where fields are initialized by their getter member functions, as shown below4. Notice the member function
checks to see if the branch number is zero, if it is, then it sets it to the appropriate default value.

/**
 Answers the branch number, which is the leftmost
 four digits of the full account number.
 Account numbers are in the format BBBBAAAAAA.
 */
 protected int getBranchNumber()
 {
 if(branchNumber == 0)
 {
 // The default branch number is 1000, which
 // is the main branch in downtown Bedrock.
 setBranchNumber(1000);
 }
 return branchNumber;
 }

It is quite common to use lazy initialization for fields that are actually other objects stored in the database.
For example, when you create a new inventory item you do not need to fetch whatever inventory item type
from the database that you’ve set as a default. Instead, use lazy initialization to set this value the first time it
is accessed so that you only have to read the inventory item type object from the database when and if you
need it. This approach is advantageous for objects that have fields that aren’t regularly accessed – Why
incur the overhead of retrieving something from persistent storage if you aren’t going to use it?

Whenever lazy initialization is used in a getter member function you should document why the default value
is what it is, as we saw in the example above. When you do this you take the mystery out of how fields are
used in your code, improving both its maintainability and extensibility.

4 Note how a setter member function is used within the getter member function.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

24

3.4.2.2 Getters for Constants
The common Java wisdom, perhaps wisdom is the wrong term, is to implement constant values as static final
fields. This approach makes sense for “constants” that are guaranteed to be stable. For example the class
Boolean implements two static final fields called TRUE and FALSE which represents the two instances of
that class. It would also make sense for a DAYS_IN_A_WEEK constant whose value probably is never
going to change5.

However, many so-called business “constants” change over time because the business rule changes.
Consider the following example: The Archon Bank of Cardassia (ABC) has always insisted that an account
has a minimum balance of $500 if it is to earn interest. To implement this, we could add a static field named
MINIMUM_BALANCE to the class Account that would be used in the member functions that calculate
interest. Although this would work, it isn’t flexible. What happens if the business rules change and
different kinds of accounts have different minimum balances, perhaps $500 for savings accounts but only
$200 for checking accounts? What would happen if the business rule were to change to a $500 minimum
balance in the first year, $400 in the second, $300 in the third, and so on? Perhaps the rule will be changed
to $500 in the summer but only $250 in the winter?6 Perhaps a combination of all of these rules will need to
be implemented in the future.

The point to be made is that implementing constants as fields isn’t flexible, a much better solution is to
implement constants as getter member functions. In our example above, a static (class) member function
called getMinimumBalance() is far more flexible than a static field called MINIMUM_BALANCE because we
can implement the various business rules in this member function and subclass it appropriately for various
kinds of accounts.

/**
Get the value of the account number. Account numbers are in the following
format: BBBBAAAAAA, where BBBB is the branch number and
AAAAAA is the branch account number.

 */
 public long getAccountNumber()
 {
 return ((getBranchNumber() * 100000) + getBranchAccountNumber());
 }

/**
Set the account number. Account numbers are in the following
format: BBBBAAAAAA where BBBB is the branch number and
AAAAAA is the branch account number.

 */
 public void setAccountNumber(int newNumber)
 {
 setBranchAccountNumber(newNumber % 1000000);
 setBranchNumber(newNumber / 1000000);
 }

5 I’m assuming that all cultures have a 7-day week, something that I do not know for sure. I have been
involved with the development of enough international applications to know that I really need to verify this
assumption. You really learn a lot on projects involving localization issues, I highly suggest getting on one.
6 Hey, I’m Canadian. This could happen.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

25

Another advantage of constant getters is that they help to increase consistency of your code. Consider the
code shown above – it doesn’t work properly. An account number is the concatenation of the branch
number and the branch account number. Testing our code, we find that the setter member function,
setAccountNumber() doesn’t update branch account numbers properly. That is because it used 100,000
instead of 1,000,000 to extract the field branchAccountNumber. Had we used a single source for this value,
the constant getter getAccountNumberDivisor() as we see in below, our code would have been more
consistent and would have worked.

/**
Returns the divisor needed to separate the branch account number from the
branch number within the full account number.
Full account numbers are in the format BBBBAAAAAA.

 */
 public long getAccountNumberDivisor()
 {
 return ((long) 1000000);
 }

/**
Get the value of the account number. Account numbers are in the following
format: BBBBAAAAAA, where BBBB is the branch number and
AAAAAA is the branch account number.

 */
 public long getAccountNumber()
 {

return ((getBranchNumber() * getAccountNumberDivisor()) +
 getBranchAccountNumber());

 }

/**
Set the account number. Account numbers are in the following
format: BBBBAAAAAA where BBBB is the branch number and
AAAAAA is the branch account number.

 */
 public void setAccountNumber(int newNumber)
 {
 setBranchAccountNumber(newNumber % getAccountNumberDivisor());
 setBranchNumber(newNumber / getAccountNumberDivisor());
 }

By using accessors for constants we decrease the chance of bugs and at the same time increase the
maintainability of our system. When the layout of an account number changes, and we know that it
eventually will (users are like that), chances are that our code will be easier to change because we’ve both
hidden and centralized the information needed to build/break up account numbers.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

26

3.4.2.3 Accessors for Collections
The main purpose of accessors is to encapsulate the access to fields so as to reduce the coupling within
your code. Collections, such as arrays and vectors, being more complex than single value fields naturally
need to have more than just the standard getter and setter member function implemented for them. In
particular, because you can add and remove to and from collections, accessor member functions need to be
included to do so. The approach that I use is to add the following accessor member functions where
appropriate for a field that is a collection:

Member Function type Naming convention Example
Getter for the collection getCollection()7 getOrderItems()
Setter for the collection setCollection() setOrderItems()
Insert an object into the collection insertObject() insertOrderItem()
Delete an object from the collection deleteObject() deleteOrderItem()
Create and add a new object into the
collection

newObject() newOrderItem()

The advantage of this approach is that the collection is fully encapsulated, allowing you to later replace it
with another structure, perhaps a linked list or a B-tree.

3.4.2.4 Accessing Several Fields Simultaneously
One of the strengths of accessor member functions is that they enable you to enforce business rules
effectively. Consider for example a class hierarchy of shapes. Each subclass of Shape knows its position
via the use of two fields – xPosition and yPosition – and can be moved on the screen on a two-dimensional
plane via invoking the member function move(Float xMovement, Float yMovement). For our purposes it
doesn’t make sense to move a shape along one axis at a time, instead we will move along both the x and the
y axis simultaneously (it is acceptable to pass a value of 0.0 as for either parameter of the move() member
function). The implication is that the move() member function should be public, but the member functions
setXPosition() and setYPosition() should both be private, being invoked by the move() member function
appropriately.

An alternative implementation would be to introduce a setter member function that updates both fields at
once, as shown below. The member functions setXPosition() and setYPosition() would still be private so
that they may not be invoked directly by external classes or subclasses (you would want to add some
documentation, shown below, indicating that they should not be directly invoked).

7 Remember, the naming convention for collections is to use a pluralized version of the type of information
that it contains. Therefore a collection of order item objects would be called orderItems .

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

27

/**
Set the position of the shape

*/
protected void setPosition(Float x, Float y)
{

setXPosition(x);
setYPosition(y);

}

/**
Set the x position – Important: Invoke setPosition(), not this member function.

*/
private void setXPosition(Float x)
{

xPosition = x;
}

/**
Set the y position of the shape
Important: Invoke setPosition(), not this member function.

*/
private void setYPosition(Float y)
{

yPosition = y;
}

Important note to all of the nitpickers out there: Yes, I could have implemented this with a single instance
of Point , but I did it this way for an easy example.

3.4.3 Visibility of Accessors
Always strive to make them protected, so that only subclasses can access the fields. Only when an ‘outside
class’ needs to access a field should you make the corresponding getter or setter public. Note that it is
common that the getter member function be public and the setter protected.

Sometimes you need to make setters private to ensure certain invariants hold. For example, an Order class
may have a field representing a collection of OrderItem instances, and a second field called orderTotal
which is the total of the entire order. The orderTotal is a convenience field that is the sum of all sub-totals
of the ordered items. The only member functions that should update the value of orderTotal are those that
manipulate the collection of order items. Assuming that those member functions are all implemented in
Order, you should make setOrderTotal() private, even though getOrderTotal() is more than likely public.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

28

3.4.4 Why Use Accessors?
I think that Kanerva (1997) says it best: “Good program design seeks to isolate parts of a program from
unnecessary, unintended, or otherwise unwanted outside influences. Access modifiers (accessors) provide
an explicit and checkable means for the language to control such contacts.” Accessor member functions
improve the maintainability of your classes in the following ways:

1. Updating fields . You have single points of update for each field, making it easier to modify and to test.
In other words your fields are encapsulated.

2. Obtaining the values of fields . You have complete control over how fields are accessed and by whom.

3. Obtaining the values of constants and the names of classes. By encapsulating the value of constants

and of class names in getter member functions when those values/names change you only need to
update the value in the getter and not every line of code where the constant/name is used.

4. Initializing fields . The use of lazy initialization ensures that fields are always initialized and that they

are initialized only if they are needed.

5. Reduction of the coupling between a subclass and its superclass(es). When subclasses access

inherited fields only through their corresponding accessor member functions, it makes it possible to
change the implementation of fields in the superclass without affecting any of its subclasses,
effectively reducing coupling between them. Accessors reduce the risk of the “fragile base class
problem” where changes in a superclass ripple throughout its subclasses.

6. Encapsulating changes to fields . If the business rules pertaining to one or more fields change you can

potentially modify your accessors to provide the same ability as before the change, making it easier for
you to respond to the new business rules.

7. Simplification of concurrency issues. Lea (1997) points out that setter member functions provide a

single place to include a notifyAll if you have waits based on the value of that field. This makes moving
to a concurrent solution much easier.

8. Name hiding becomes less of an issue. Although you should avoid name hiding, giving local variables

the same names as fields, the use of accessors to always access fields means that you can give local
variables any name you want – You do not have to worry about hiding field names because you never
access them directly anyway.

3.4.5 Why Shouldn’t You Use Accessors?
The only time that you might want to not use accessors is when execution time is of the utmost importance,
however, it is a very rare case indeed that the increased coupling within your application justifies this
action. Lea (1996) makes a case for minimizing the use of accessors on the grounds that it is often the case
that the values of fields in combination must be consistent, and that it isn’t wise to provide access to fields
singly. He’s right, so do not! I think that Lea has missed the point that you do not need to make all
accessor member functions public. When you are in the situation that the values of some fields depend
upon one another then you should introduce member functions that do the “right thing” and make the
appropriate accessor member functions either protected or private as needed. You do not have to make all
of your accessors public.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

29

3.5 Always Initialize Static Fields
Doug Lea (1996) validly points out that you must ensure that static fields, also known as class fields, be
given valid values because you can’t assume that instances of a class will be created before a static field is
accessed. Lea suggests the use of static initializers (Grand, 1997), static blocks of code which are
automatically run when a class is loaded. Note that this is a problem only if you choose not to use accessor
member functions for static fields – With accessor member functions you can always use lazy initialization
to guarantee that the value of a field is set. The use of accessor member functions to encapsulate fields
gives you complete control over how they are used, while reducing coupling within your code. A win-win
situation.

Blatant Advertising – Purchase More Process Patterns today!
This book presents a collection of process patterns for successfully
delivering a software project and then operating and supporting it once
it is in production. It provides a wealth of advice for testing your
object-oriented application, for reworking it, for preparing to transition it
to your user community, and for supporting it once it is in production.
It puts these topics in the context of a proven software process for the
development of large-scale, mission-critical software, covering topics
that you typically don’t find in other books about object-oriented
development such as project management, quality assurance, risk
management, and deliverables management. Object-oriented
development is hard, particularly if you are building systems using n-
tier technology such as Enterprise JavaBeans (EJB) or even the
“simple” Java platform, and you need to understand the big picture to
be successful. More Process Patterns, and its sister book, Process
Patterns, give you that big picture. For more information, and to order
online, visit http://www.ambysoft.com/moreProcessPatterns.html

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

30

4. Standards for Local Variables
A local variable is an object or data item that is defined within the scope of a block, often a member function.
The scope of a local variable is the block in which it is defined. The important coding standards for local
variables focus on:
• Naming conventions
• Documentation conventions
• Declarations

4.1 Naming Local Variables
 In general, local variables are named following the same conventions as used for fields, in other words use
full English descriptors with the first letter of any non-initial word in uppercase.

 For the sake of convenience, however, this naming convention is relaxed for several specific types of local
variable:
• Streams
• Loop counters
• Exceptions

4.1.1 Naming Streams
When there is a single input and/or output stream being opened, used, and then closed within a member
function the common convention is to use in and out for the names of these streams, respectively (Gosling,
Joy, Steele, 1996). For a stream used for both input and output, the implication is to use the name inOut.

A common alternative to this naming convention is to use the names inputStream, outputStream, and
ioStream instead of in, out, and inOut respectively. To tell you the truth I like this alternative better, but the
fact remains that the names in and out are what Sun suggests, so that’s what you should probably stick
with.

4.1.2 Naming Loop Counters
Because loop counters are a very common use for local variables, and because it was acceptable in C/C++,
in Java programming the use of i, j, or k, is acceptable for loop counters (Gosling, Joy, Steele, 1996;
Sandvik, 1996). If you use these names for loop counters, use them consistently.

A common alternative is to use names like loopCounter or simply counter, but the problem with this
approach is that you often find names like counter1 and counter2 in member functions that require more
than one counter. The bottom line is that i, j, k work as counters, they’re quick to type in, and they’re
generally accepted.

A major disadvantage of using single letter names for counters, or for anything, is that when you try to
search for its use within a code file you will obtain many false hits – consider the ease of searching for
loopCounter over the letter i.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

31

4.1.3 Naming Exception Objects
Because exception handling is also very common in Java coding the use of the letter e for a generic
exception is considered acceptable (Gosling, Joy, Steele, 1996; Sandvik, 1996).

4.1.4 Bad Ideas for Naming Local Variables
Unfortunately a few “common” short names have been approved for local variables, but frankly I think
they’re inappropriate. In the chart below I have summarized the naming conventions put forth by Sun for
other types of common objects/variables used in Java (Gosling, Joy, Steele, 1996). I’m sorry, but it is my
opinion that these conventions have crossed the hacking line and actually reduce the readability of your
source code. Use these conventions if you want to, but I do not recommend them.

Variable Type Suggested Naming Convention
offset off
length len
byte b
char c
double d
float f
long l
Object o
String s
Arbitrary value v

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

32

4.2 Declaring and Documenting Local Variables
There are several conventions regarding the declaration and documentation of local variable in Java. These
conventions are:

1. Declare one local variable per line of code. This is consistent with one statement per line of code and
makes it possible to document each variable with an endline comment (Vision, 2000).

2. Document local variables with an endline comment. Endline commenting is a style in which a single

line comment, denoted by //, immediately follows a command on the same line of code (this is called an
endline comment). You should document what a local variable is used for and where appropriate why it
is used, making your code easier to understand.

3. Declare local variables immediately before their use. By declaring local variables where they are first

needed other programmers do not need to scroll to the top of the member function to find out what a
local variable is used for. Furthermore, your code may be more efficient because if that code is never
reached the variable will not need to be allocated (Vision, 1996). The main disadvantage of this
approach is that your declarations are dispersed throughout each of your member functions, making it
difficult to find all declarations in large member functions.

4. Use local variables for one thing only. Whenever you use a local variable for more than one reason

you effectively decrease its cohesion, making it difficult to understand. You also increase the chances
of introducing bugs into your code from the unexpected side effects of previous values of a local
variable from earlier in the code. Yes, reusing local variables is more efficient because less memory
needs to be allocated, but reusing local variables decreases the maintainability of your code and makes
it more fragile. This usually isn’t worth the small savings from not having to allocate more memory.

4.2.1 General Comments About Declaration
Local variables that are declared between lines of code, for example within the scope of an if statement, can
be difficult to find by people not familiar with your code.

One alternative to declaring local variables immediately before their first use is to instead declare them at the
top of the code. Because your member functions should be short anyway, see Section 2.4.6, it shouldn’t be
all that bad having to go to the top of your code to determine what the local variable is all about.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

33

5. Standards for Parameters (Arguments) To Member
Functions
The standards that are important for parameters/arguments to member functions focus on how they are
named and how they are documented. Throughout this white paper I will use the term parameter to refer to
a member function argument.

5.1 Naming Parameters
Parameters should be named following the exact same conventions as for local variables. As with local
variables, name hiding is an issue (if you aren’t using accessors).

Examples:
customer
inventoryItem
photonTorpedo
in
e

5.1.1 Alternative – Prefix Parameter Names with ‘a’ or ‘an’
A viable alternative, taken from Smalltalk, is to use the naming conventions for local variables, with the
addition of “a” or “an” on the front of the name. The addition of “a” or “an” helps to make the parameter
stand out from local variables and fields, and avoids the name-hiding problem. This is my preferred
approach.

Examples:
aCustomer
anInventoryItem
aPhotonTorpedo
anInputStream
anException

5.1.2 Alternative – Name Parameters Based on Their Type
Another alternative to naming variables, which I do not recommend at all, is to give them a name based on
their type. This is a bad idea for several reasons: First, the type is already indicated in the definition of the
member function. Second, a parameter name like aString tells you much less information than a name like
accountNumber or firstName.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

34

5.1.3 Alternative – Name Parameters The Same as Their Corresponding Fields (if
any)
A third alternative (Gosling, The Java Programming Language) is to name parameters that align to an
existing field with the same name as the existing field. For example, if Account has an attribute called balance
and you needed to pass a parameter representing a new value for it the parameter would be called balance.
The field would be referred to as this.balance in the code and the parameter would be referred to as balance
(you could also invoke the appropriate accessor method). Although this is a viable approach my experience
is that you're playing with fire as it's too easy to forget the "this." I would avoid this approach if possible as
you'll likely have name hiding issues to deal with.

5.2 Documenting Parameters
Parameters to a member function are documented in the header documentation for the member function
using the javadoc @param tag. You should describe:

1. What it should be used for. You need to document what a parameter is used for so that other
developers understand the full context of how the parameter is used.

2. Any restrictions or preconditions. If the full range of values for a parameter is not acceptable to a

member function, then the invoker of that member function needs to know. Perhaps a member function
only accepts positive numbers, or strings of less than five characters.

3. Examples. If it is not completely obvious what a parameter should be, then you should provide one or

more examples in the documentation.

Tip – Use Interfaces for Parameter Types

Instead of specifying a class, such as Object, for the type of a parameter, if appropriate specify an interface,
such as Runnable, if appropriate. The advantage is that this approach, depending on the situation, can be
more specific (Runnable is more specific than Object), or may potentially be a better way to support
polymorphism (instead of insisting on a parameter being an instance of a class in a specific class hierarchy,
you specify that it supports a specific interface implying that it only needs to be polymorphically compliant
to what you need)

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

35

6. Standards for Classes, Interfaces, Packages, and
Compilation Units
This chapter concentrates on standards and guidelines for classes, interfaces, packages, and compilation
units. A class is a template from which objects are instantiated (created). Classes contain the declaration of
fields and member functions. Interfaces are the definition of a common signature, including both member
functions and fields, which a class that implements an interface must support. A package is a collection of
related classes. Finally, a compilation unit is a source code file in which classes and interfaces are declared.
Because Java allows compilation units to be stored in a database, an individual compilation unit may not
directly relate to a physical source code file.

6.1 Standards for Classes
The standards that are important for classes are based on:
• Visibility
• Naming conventions
• Documentation conventions
• Declaration conventions
• The public and protected interface

6.1.1 Class Visibility
Classes may have one of two visibilities: public or package (default). Public visibility is indicated with the
keyword public and package visibility is not indicated (there is no keyword). Public classes are visible to all
other classes whereas classes with package visibility are visible only to classes within the same package.

1. Use package visibility for classes internal to a component. With package visibility you hide classes
within the package, effectively encapsulating them within your component.

2. Use public visibility for the facades of components. Components are encapsulated by façade classes,
classes that implement the interface of the component and that route messages to classes internal to the
component.

6.1.2 Naming Classes
The standard Java convention is to use a full English descriptor starting with the first letter capitalized using
mixed case for the rest of the name (Gosling, Joy, Steele, 1996; Sandvik, 1996; Ambler, 1998a).

Examples:
Customer
Employee
Order
OrderItem
FileStream
String

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

36

6.1.3 Documenting a Class
The following information should appear in the documentation comments immediately preceding the
definition of a class:

1. The purpose of the class. Developers need to know the general purpose of a class so they can
determine whether or not it meets their needs. I also make it a habit to document any good things to
know about a class, for example is it part of a pattern or are there any interesting limitations to using it
(Ambler, 1998a).

2. Known bugs8. If there are any outstanding problems with a class they should be documented so that

other developers understand the weaknesses/difficulties with the class. Furthermore, the reason for not
fixing the bug should also be documented. Note that if a bug is specific to a single member function
then it should be directly associated with the member function instead.

3. The development/maintenance history of the class. It is common practice to include a history table

listing dates, authors, and summaries of changes made to a class (Lea, 1996). The purpose of this is to
provide maintenance programmers insight into the modifications made to a class in the past, as well as
to document who has done what to a class. As with member functions, this information is better
contained in a configuration management system, not the source file itself.

4. Document applicable invariants. An invariant is a set of assertions about an instance or class that

must be true at all "stable" times, where a stable time is defined as the period before a member function
is invoked on the object/class and immediately after a member function is invoked (Meyer, 1988). By
documenting the invariants of a class you provide valuable insight to other developers as to how a
class can be used.

5. The concurrency strategy. Any class that implements the interface Runnable should have its

concurrency strategy fully described. Concurrent programming is a complex topic that is new for many
programmers, therefore you need to invest the extra time to ensure that people can understand your
work. It is important to document your concurrency strategy and why you chose that strategy over
others. Common concurrency strategies (Lea, 1997) include the following: Synchronized objects,
balking objects, guarded objects, versioned objects, concurrency policy controllers, and acceptors.

Blatant Advertising – Purchase Building Object Applications That Work today!
Building Object Applications That Work is an intermediate-level book about
object-oriented development. It covers a wide range of topics that few other
books dare to consider, including: architecting your applications so that
they’re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; ΟΟ υser interface design; and a multitude of coding techniques to
make your code robust. Visit
http://www.ambysoft.com/buildingObjectApplications.html for more details.

 8 Yes, it is better to fix bugs. However, sometimes you do not have the time to do so or it isn’t important to
your work at the moment. For example, you might know that a member function will not work properly when
passed a negative number, but that it does work properly for positive numbers. Your application only
passes it positive numbers, so you can live with the bug but decide to be polite and document that the
problem exists.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

37

6.1.4 Class Declarations

6.1.4.1 Apply The “final” Keyword Sensibly
Use the keyword final to indicate that your class can not be inherited from. This is a design decision on the
part of the original developer, one that should not be taken lightly.

6.1.4.2 Ordering Member Functions and Fields
One way to make your classes easier to understand is to declare them in a consistent manner. The common
approach in Java is to declare a class in the order of most visible to least visible (NPS, 1996), enabling you to
discover the most important features, the public ones, first. Laffra (1997) points out that constructors and
finalize() should be listed first, presumably because these are the first member functions that another
developer will look at first to understand how to use the class. Furthermore, because we have a standard to
declare all fields as private, the declaration order really boils down to:

constructors
finalize()
public member functions
protected member functions
private member functions
private fields

Within each grouping of member functions it is common to list them in alphabetical order. Many developers
choose to list the static member functions within each grouping first, followed by instance member
functions, and then within each of these two sub-groupings list the member functions alphabetically. Both
of these approaches are valid, you just need to choose one and stick to it.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

38

6.1.5 Minimize the Public and Protected Interface
One of the fundamentals of object-oriented design is to minimize the public interface of a class. There are
several reasons for this:

1. Learnability. To learn how to use a class you should only have to understand its public interface. The
smaller the public interface, the easier a class is to learn.

2. Reduced coupling. Whenever the instance of one class sends a message to an instance of another

class, or directly to the class itself, the two classes become coupled. Minimizing the public interface
implies that you are minimizing the opportunities for coupling.

3. Greater flexibility. This is directly related to coupling. Whenever you want to change the way that a

member function in your public interface is implemented, perhaps you want to modify what the member
function returns, then you potentially have to modify any code that invokes the member function. The
smaller the public interface the greater the encapsulation and therefore the greater your flexibility.

It is clear that it is worth your while to minimize the public interface, but often what isn’t so clear is that you
also want to minimize the protected interface as well. The basic idea is that from the point of view of a
subclass, the protected interfaces of all of its superclasses are effectively public – Any member function in
the protected interface can be invoked by a subclass. Therefore, you want to minimize the protected
interface of a class for the same reasons that you want to minimize the public interface.

Tip – Define The Public Interface First

Most experienced developers define the public interface of a class before they begin coding it. First, if you
do not know what services/behaviors a class will perform, then you still have some design work to do.
Second, it enables them to stub out the class quickly so that other developers who rely on it can at least
work with the stub until the “real” class has been developed. Third, this approach provides you with an
initial framework around which to build your class.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

39

6.2 Standards for Interfaces
The standards that are important for interfaces are based on:
• Naming conventions
• Documentation conventions

6.2.1 Naming Interfaces
The Java convention is to name interfaces using mixed case with the first letter of each word capitalized. The
preferred Java convention for the name of an interface is to use a descriptive adjective, such as Runnable or
Cloneable, although descriptive nouns, such as Singleton or DataInput, are also common (Gosling, Joy,
Steele, 1996).

Alternatives:
1. Prefix the letter ‘I’ to the interface name. Coad and Mayfield (1997) suggest appending the letter ‘I’ to

the front of an interface names, resulting in names like ISingleton or IRunnable. This approach helps to
distinguish interface names from class and package names. I like this potential naming convention for
the simple fact that it makes your class diagrams, sometimes referred to as object models, easier to read.
The main disadvantage is that the existing interfaces, such as Runnable, aren’t named using this
approach, and I do not see them ever changing. Therefore I chose the defacto standard described
above. This interface naming convention is also popular for Microsoft’s COM/DCOM architecture.

2. Postfix ‘Ifc’ onto the interface name. Lea (1996) suggests appending ‘Ifc’ to the end of an interface

name, resulting in names like SingletonIfc or RunnableIfc, whenever the name of an interface is similar
to that of a class (Lea, 1996). I like the general idea, although I would be tempted to prefix the name with
the full word ‘Interface.’ This suggestion suffers from the same problem as the one above.

6.2.2 Documenting Interfaces
The following information should appear in the documentation comments immediately preceding the
definition of an interface:

1. The purpose. Before other developers will use an interface, they need to understand the concept that it
encapsulates. In other words, they need to know its purpose. A really good test of whether or not you
need to define an interface is whether or not you can easily describe its purpose. If you have
difficulties describing it, then chances are pretty good you do not need the interface to begin with.
Because the concept of interfaces is new to Java, people are not yet experienced in their appropriate use
and they are likely to overuse them because they are new. Just like the concept of inheritance, and in
particular multiple inheritance, was greatly abused by developers new to object-orientation, I suspect
that interfaces will also be greatly abused at first by programmers new to Java.

2. How it should and shouldn’t be used. Developers need to know both how an interface is to be used, as

well as how it shouldn’t be used (Coad & Mayfield, 1997).

Because the signature for member functions is defined in an interface, for each member function signature
you should follow the member function documentation conventions discussed in chapter 2.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

40

6.3 Standards for Packages
The standards that are important for packages are based on:
• Naming conventions
• Documentation conventions

6.3.1 Naming Packages
There are several rules associated with the naming of packages. In order, these rules are:

1. Identifiers are separated by periods. To make package names more readable, Sun suggests that the
identifiers in package names be separated by periods. For example, the package name java.awt is
comprised of two identifiers, java and awt.

2. The standard java distribution packages from Sun begin with the identifier ‘java’ or ‘javax’. Sun has

reserved this right so that the standard java packages are named in a consistent manner regardless of
the vendor of your Java development environment.

3. Local package names begin with an identifier that is not all upper case. Local packages are ones that

are used internally within your organization and that will not be distributed to other organizations.
Examples of these package names include persistence.mapping.relational and interface.screen.

4. Global package names begin with the reversed Internet domain name for your organization. A

package that is to be distributed to multiple organizations should include the name of the originating
organization’s domain name, with the top-level domain type in lower case. For example, to distribute the
previous packages, I would name them com.ambysoft.www.persistence.mapping.relational and
com.ambysoft.www.interface.screens. The prefix (.com) should be lower case and should be one of the
standard Internet top-level domain names (currently com, edu, gov, mil, net, org).

5. Package names should be singular. The common convention is to use singular names for package
names, such as interface.screen, and not a plural, such as interface.screens .

6.3.2 Documenting a Package
You should maintain one or more external documents that describe the purpose of the packages developed
by your organization. For each package you should document:

1. The rationale for the package. Other developers need to know what a package is all about so that they
can determine whether or not they want to use it, and if it is a shared package whether or not they want
to enhance or extend it.

2. The classes in the package. Include a list of the classes and interfaces in the package with a brief, one-

line description of each so that other developers know what the package contains.

Lea (1996) suggests creating an HTML file called index.html for each package, putting the file into the
appropriate directory for the package. A better name would be the fully qualified name of the package,
postfixed with .html, so that you do not have to worry about accidentally overwriting one package
documentation file with another. I like Lea’s idea, in general, but my experience has shown that similarly
named files get overwritten often enough to modify his approach slightly.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

41

6.4 Standards for Compilation Units
The standards and guidelines for compilation units are based on:
• Naming conventions
• Documentation conventions

6.4.1 Naming a Compilation Unit
A compilation unit, in this case a source code file, should be given the name of the primary class or interface
that is declared within it. Use the same name for the package/class for the file name, using the same case.
The extension .java should be postfixed to the file name.

Examples:
Customer.java
Singleton.java
SavingsAccount.java

6.4.2 Documenting a Compilation Unit
Although you should strive to have only one class or interface declaration per file, it sometimes makes
sense to define several classes (or interfaces) in the same file. My general rule of thumb is that if the sole
purpose of class B is to encapsulate functionality that is needed only by class A then it makes sense that
class B appear in the same source code file as class A9. As a result, I have separated the following
documentation conventions that apply to a source code file, and not specifically to a class:

1. For files with several classes, list each class. If a file contains more than one class you should provide
a list of the classes and a brief description for each (Lea, 1996).

2. [OPTIONAL] The file name and/or identifying information. The name of the file should be included at

the top of it (Lea, 1996). The advantage is that if the code is printed you know what the source file for
the code is. The disadvantage is that if you change the source file name you also need to update your
documentation, therefore if you have a sophisticated source control system (and if you don’t then get
one) you might want to not include the source file name.

3. Copyright information. If applicable you should indicate any copyright information for the file (Lea,

1996). It is common to indicate the year of the copyright and the name of the individual/organization
that holds the copyright. Note that the code author may not be the holder of the copyright.

9 The concept of an “inner” class was introduced in JDK 1.1, which would be one option for implementing
class B.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

42

7. Miscellaneous Standards/Issues
In this chapter I want to share with you several standards/guidelines that are important, but that are general
enough that they need their own chapter.

7.1 Reuse
Any Java class library or package that you purchase/reuse from an external source should be certified as
100% pure Java (Sun, 1997). By enforcing this standard you are guaranteed that what you are reusing will
work on all platforms that you choose to deploy it on. You can obtain Java classes, packages, or applets
from a variety of sources, either a third-party development company that specializes in Java libraries or
another division or project team within your organization.

Scott’s Soapbox – 100% Pure is 100% Dead On

In my opinion the 100% Pure effort from Sun is exactly what Java needs. In my second book, Building
Object Applications That Work (Ambler, 1998a), I had a few harsh words about the portability of Java.
There are two portability issues with Java: Source code portability and bytecode portability. At the time of
this writing, May 1997, I think that developers porting from JDK 1.0 to JDK 1.1 now have a better
appreciation for what I was talking about. In many ways the 100% Pure effort is Sun’s recognition that
portability doesn’t come free just because you use Java, you actually have to work at it to ensure that your
code is portable. With multiple vendors of Java, several of whom would like to mold Java in their own
image, without something like the 100% Pure effort Java code will become just as portable as C code – Not
very.

Sun’s message to the other Java vendors and to Java developers is clear: Proprietary Java solutions will not
be tolerated.

7.2 Use Wild Cards When Importing Classes
The import statement allows the use of wildcards when indicating the names of classes. For example, the
statement

import java.awt.*;
brings in all of the classes in the package java.awt at once. Actually, that’s not completely true. What really
happens is that every class that you use from the java.awt package will be brought into your code when it is
compiled, classes that you do not use will not be.

7.2.1 Alternative – Explicitly Specify Each Imported Class
Another approach is to fully qualify the name of the classes that your code uses (Laffra, 1997; Vision, 1996),
as shown in the example below:

import java.awt.Color;
import java.awt.Button;
import java.awt.Container;

The problem with this approach is that it increases your maintenance burden – you need to keep your
import list accurate whenever you add a new class (the compiler will force this on you) and whenever you
stop using a class (you need to do this yourself).

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

43

7.3 Optimizing Java Code
I have left my discussion of Java code optimization toward the end of this white paper for
a reason: optimizing your code is one of the last things that programmers should be
thinking about, not one of the first. My experience is that you want to leave optimization
to the end because you want to optimize only the code that needs it – very often a small
percentage of your code results in the vast majority of the processing time, and this is the
code that you should be optimizing. A classic mistake made by inexperienced
programmers is to try to optimize all of their code, even code that already runs fast
enough. Personally, I prefer to optimize the code that needs it and then move on to more
interesting things than trying to squeeze out every single CPU cycle.

Do not waste
your time
optimizing
code that
nobody cares
about.

Figure 1. The Program process pattern.

Figure 1 presents the Program stage process pattern (Ambler, 1998b) which describes the iterative process
by which you develop source code. This process pattern shows that code optimization is a part of
programming, but only one of many parts. A word of advice that all coders should take to heart.

Write
Source Code

Document Source
Code

Prepare Code for
Inspections

Synchronize
Source Code
With Models

Understand
Models

Reuse Existing
Code and

Components
Optimize Code

Integrate and
Package

Prepare
Integration

Plan

"Build" the
Software

Packaged
Application,
Source Code

Models,
Project

Infrastructure

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

44

Tip – Define Your Project’s Development Priorities

Everybody has their own idea about what is important, and software developers are no different. The issue
is that your project, and your organization, needs to define what their development priorities are so that all
team members are working to the same vision. Maguire (1994) believes that your organization needs to
establish a ranking order for the following factors: size, speed, robustness, safety, testability,
maintainability, simplicity, reusability, and portability. These factors define the quality of the software that
you produce, and by prioritizing them you will help to define the development goals for your team and will
reduce the opportunities for disagreement between your developers.

What should you look for when optimizing code? Koenig (1997) points out that the most important factors
are fixed overhead and performance on large inputs. The reason for this is simple: fixed overhead dominates
the runtime speed for small inputs and the algorithm dominates for large inputs. His rule of thumb is that a
program that works well for both small and large inputs will likely work well for medium-sized inputs.

Developers who have to write software that work on several hardware platforms and/or operating systems
need to be aware of idiosyncrasies in the various platforms. Operations that might appear to take a
particular amount of time, such as the way that memory and buffers are handled, often show substantial
variations between platforms. It is common to find that you need to optimize your code differently
depending on the platform.

Blatant Advertising – Purchase Process Patterns today!
This book presents a collection of process patterns for successfully
initiating a software project and taking it through the construction
phase. It provides a wealth of advice for engineering requirements,
modeling, programming, and testing. It puts these topics in the context
of a proven software process for the development of large-scale,
mission-critical software, covering topics that you typically don’t find
in other books about object-oriented development such as project
management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the “simple” Java platform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns, give you that big picture. For more
information, and to order online, visit
http://www.ambysoft.com/processPatterns.html

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

45

Another issue to be aware of when optimizing code is the priorities of your users
because depending on the context people will be sensitive to particular delays. For
example, your users will likely be happier with a screen that draws itself immediately
and then takes eight seconds to load data than with a screen that draws itself after
taking five seconds to load data. In other words most users are willing to wait a little
longer as long as they’re given immediate feedback, important knowledge to have
when optimizing your code.

You do not always
need to make your
code run faster to
optimize it in the
eyes of your
users.

Although optimization may mean the difference between the success and failure of your application, never
forget that it is far more important to get your code to work properly. Never forget that slow software that
works is almost always preferable to fast software that does not.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

46

7.4 Writing Java Test Harnesses

Object-oriented testing is critical topic that has been all but ignored by the object development community.
The reality is that either you or someone else will have to test the software that you write, regardless of the
language that you’ve chosen to work in. A test harness is the collection of member functions, some
embedded in the classes themselves (this is called built-in tests) and some in specialized testing classes,
that is used to test your application.

1. Prefix all testing member function names with ‘test’. This allows you to quickly find all the testing
member functions in your code. The advantage of prefixing the name of test member functions with
‘test’ is that it allows you to easily strip your testing member functions out of your source code before
compiling the production version of it.

2. Name all member function test member functions consistently. Method testing is the act of verifying

that a single member function performs as defined. All member function test member functions should
be named following the format ‘testMemberFunctionNameForTestName’. For example, the test harness
member functions to test withdrawFunds() would include testWithdrawFundsForInsufficientFunds()
and testWithdrawFundsForSmallWithdrawal(). If you have a series of tests for withdrawFunds() you
may choose to write a member function called testWithdrawFunds() that invokes all of them.

3. Name all class test member functions consistently. Class testing is the act of verifying that a single

class performs as defined. All class test member functions should be named following the format
‘testSelfForTestName’. For example, the test harness member functions to test the Account class
testSelfForSimultaneousAccess() and testSelfForReporting().

4. Create a single point for invoking the tests for a class. Develop a static member function called

testSelf() that invokes all class testing and method testing member functions.

5. Document your test harness member functions. The documentation should include a description of

the test as well as the expected results of the test. If you choose to document your tests in an external
document, such as a master test/QA plan (Ambler, 1998b; Ambler, 1999) then refer to the appropriate
section of that plan in your source code documentation to support traceability.

Further Reading In Object-Oriented Testing

If you’re interested in learning more about object-oriented testing then you’re in luck because I’ve written a
fair bit on the topic. I started with something called Full Lifecycle Object-Oriented Testing (Ambler, 1998a;
Ambler, 1998b; Ambler, 2000d), also known as FLOOT, and evolved this work into the Test In the Small
process pattern (Ambler, 1998b) and the Test In The Large process pattern (Ambler, 1999). I’ve also set up
a testing reading list, http://www.ambysoft.com/booksTesting.html , within my online bookstore that you’ll
find useful as well as provided several links to testing and quality assurance related sites at The Process
Patterns Page (http://www.ambysoft.com/processPatternsPage.html).

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

47

8. The Secrets of Success
The good news is that the reason why I wrote this white paper is because I want to help make Java
developers more productive. The bad news is that having a standards document in your possession
doesn’t automatically make you more productive as a developer. To be successful you must choose to
become more productive, and that means you must apply these standards effectively.

8.1 Using These Standards Effectively
The following words of advice will help you to use the Java coding standards and guidelines described in
this white paper more effectively:

1. Understand the standards. Take the time to understand why each standard and guideline leads to
greater productivity. For example, do not declare each local variable on its own line just because I told
you to, do it because you understand that it increases the understandability of your code.

2. Believe in them. Understanding each standard is a start, but you also need to believe in them too.

Following standards shouldn’t be something that you do when you have the time, it should be
something that you always do because you believe that this is the best way to code. It has been years
since I have had to do an “all-nighter” writing code, in most part because I make it a point to use tools
and techniques that make me a productive developer. I believe in following standards because it has
been my experience that intelligent standards applied appropriately lead to significant increases in my
productivity as a developer.

3. Follow them while you are coding, not as an afterthought. Documented code is easier to understand

while you are writing it as well as after it is written. Consistently named member functions and fields are
easier to work with during development as well as during maintenance. Clean code is easier to work
with during development and during maintenance. The bottom line is that following standards will
increase your productivity while you are developing as well as make your code easier to maintain
(hence making maintenance developers more productive too). I have seen too many people write
sloppy code while they are developing, and then spend almost as long cleaning it up at the end so that
it will pass inspection. That is stupid. If you write clean code right from the beginning you can benefit
from it while you are creating it. That is smart.

4. Make them part of your quality assurance process. Part of a code inspection should be to ensure that

source code follows the standards adopted by your organization. Use standards as the basis from
which you train and mentor your developers to become more effective.

5. Adopt the standards that make the most sense for you. You do not need to adopt every standard at

once, instead start with the ones that you find the most acceptable, or perhaps the least unacceptable,
and then go from there. Bring standards into your organization in stages, slowly but surely.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

48

8.2 Other Factors That Lead to Successful Code
I’d like to share several techniques with you from Building Object Applications That Work (Ambler, 1998a)
that, in addition to following standards, lead to greater productivity:

1. Program for people, not the machine. The primary goal of your development efforts should be that
your code is easy for other people to understand. If no one else can figure it out, then it isn’t any good.
Use naming conventions. Document your code. Paragraph it.

2. Design first, then code. Have you ever been in a situation where some of the code that your program

relies on needs to be changed? Perhaps a new parameter needs to be passed to a member function, or
perhaps a class needs to be broken up into several classes. How much extra work did you have to do
to make sure that your code works with the reconfigured version of the modified code? How happy
were you? Did you ask yourself why somebody didn’t stop and think about it first when he or she
originally wrote the code so that this didn’t need to happen? That they should have DESIGNED it first?
Of course you did. If you take the time to figure out how you are going to write your code before you
actually start coding you’ll probably spend less time writing it. Furthermore, you’ll potentially reduce
the impact of future changes on your code simply by thinking about them up front.

3. Develop in small steps. I have always found that developing in small steps, writing a few member

functions, testing them, and then writing a few more member functions is often far more effective than
writing a whole bunch of code all at once and then trying to fix it. It is much easier to test and fix ten
lines of code than 100, in fact, I would safely say that you could program, test, and fix 100 lines of code
in ten 10-line increments in less than half the time than you could write a single one-hundred line block
of code that did the same work. The reason for this is simple. Whenever you are testing your code and
you find a bug you almost always find the bug in the new code that you just wrote, assuming of course
that the rest of the code was pretty solid to begin with. You can hunt down a bug a lot faster in a small
section of code than in a big one. By developing in small incremental steps you reduce the average
time that it takes to find a bug, which in turn reduces your overall development time.

4. Read, read, read. This industry moves far too quickly for anyone to sit on their laurels. In fact, friends

of mine within Sun estimate that it’s a full time job for two to three people just to keep up with what’s
happening with Java, let alone what’s happening in the object-orientation field or even development in
general. That says to me that you need to invest at least some time trying to keep up. To make things
easier for you, I’ve created an online reading list indicating what I consider to be the key development
books that you should consider reading.

Scott’s Suggested Reading List: An Online Bookstore

Visit http://www.ambysoft.com/books.html for a collection of reading lists for key topics in software
development, including Java, patterns, object-orientation, and the software process. Through the
Amazon.com Associates program I’ve set it up so that you can order the books that you want right on the
spot. It’s as easy as clicking on the cover of the book that you want.

5. Work closely with your users. Good developers work closely with their users. Users know the
business. Users are the reason why developers create systems, to support the work of users. Users
pay the bills, including the salaries of developers. You simply can’t develop a successful system if you
do not understand the needs of your users, and the only way that you can understand their needs is if
you work closely with them.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

49

6. Keep your code simple. Complex code might be intellectually satisfying to write but if other people
can’t understand it then it isn’t any good. The first time that someone, perhaps even you, is asked to
modify a piece of complex code to either fix a bug or to enhance it chances are pretty good that the code
will get rewritten. In fact, you’ve probably even had to rewrite somebody else’s code because it was
too hard to understand. What did you think of the original developer when you rewrote their code, did
you think that person was a genius or a jerk? Writing code that needs to be rewritten later is nothing to
be proud of, so follow the KISS rule: Keep it simple, stupid.

7. Learn common patterns, antipatterns, and idioms. There is a wealth of analysis, design, and process

patterns and antipatterns, as well as programming idioms , available to guide you in increasing your
development productivity. My experience [Ambler, 1998b] is that patterns provide the opportunity for
very high levels of reuse within your software development projects. For more information, visit The
Process Patterns Resource Page (http://www.ambysoft.com/processPatternsPage.html) for links to key
patterns resources and process-oriented web sites.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

50

9. Proposed javadoc Tags for Member Functions
From the discussions about documentation in this white paper it should be clear that javadoc needs a few
more tags. While I grant that it is important to keep javadoc simple, at the same time it also needs to be
sufficient for the task at hand. As a result, I wish to propose the following new tags that I hope will be
supported in a future version of javadoc.

Proposed Tag Used for Purpose
@bug description Classes,

Member
Functions

Describes a known bug with the class or member function.
One tag per bug should be used.

@concurrency description Classes,
Member
Functions,
Fields

Describes the concurrency strategy/approach taken by
the class/member function/field. The execution context for
a member function should be described at this point.

@copyright year description Classes Indicates that a class is copyrighted, the year that it was
copyrighted in, and any descriptive information such as
the name of the individual/organization that holds the
copyright.

@example description Classes,
Member
Functions,
Fields

Provides one or more examples of how to use a given
class, member function, or field. This helps developers to
quickly understand how to use your classes.

@fyi description Classes,
Interfaces
Member
Functions,
Fields

Provides information about design decisions that you
have made and/or good things to know about parts of
your code.

@history description Classes,
Member
Functions

Describes how a class/member function has been modified
over time. For each change, the description should
include: who made it, when it was made, what was done,
why it was done, and a reference to the change request
and/or user requirement that resulted in it.

@modifies no Member
Functions

Indicates that a member function does not modify an
object

@modifies yes description Member
Functions

Indicates that a member function modifies an object and
describes how it does so.

@postcondition description Member
Functions

Describes a postcondition that is true after a member
function has been invoked. Use one tag per
postcondition.

@precondition description Member
Functions

Describes a precondition that must be true before the
member function can be safely invoked. Use one tag per
precondition.

@reference description Classes,
Interfaces,
Member
Functions,
Fields

Describes a reference to an external document that
documents pertinent business rules or information that is
relevant to the source code being documented.

@values Fields Describes the possible values of a field, including ranges
and/or distinct values.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

51

Since I originally wrote this section of the document, Sun has introduced something called "doclets" which
give you the ability to extend javadoc (i.e. add new tags). For more information about doclets, and about
any proposed new tags, please refer to the information posted at http://java.sun.com about javadoc.

10. Where To Go From Here
This paper is a really good start at understanding how to write robust Java code, but if you truly want to
become a superior Java programmer then I highly suggest reading the book The Elements of Java Style
(Vermeulen et. al., 2000). This book presents a wider range of guidelines than what is presented here in this
paper, and more importantly presents excellent source code examples. This paper was combined with Rogue
Wave’s internal coding standards and then together were evolved to become The Elements of Java Style,
so you should find the book to be an excellent next step in your learning process. Visit
http://www.ambysoft.com/elementsJavaStyle.html for more details.

10.1 Creating Your Own Internal Corporate Guidelines?

10.1.1 Using This PDF File
This file is copyrighted.
You are welcome to use this file, in its entirety, free of charge for the following purposes:
• Your own personal learning experience.
• Your organization’s internal use as either a corporate guideline or as a reference document.

10.1.2 Obtaining the Source Document for This File
The source, in Microsoft Word format, is for sale for $1,000 US. If your organization is writing its own
internal guidelines, specific to your own environment, then you should seriously consider using this
document from a base from which to start. For details email scott@ambysoft.com

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

52

11. Summary
In this white paper we discussed many standards and guidelines for Java developers. Because this white
paper is reasonably large I have summarized them here for your convenience. I highly suggest reprinting
the pages of this chapter and pinning them on the wall of your workspace so that they are at your fingertips.

This chapter is organized into several one-page summaries of our Java coding standards, collected by topic.
These topics are:
• Java naming conventions
• Java documentation conventions
• Java coding conventions

 Before we summarize the rest of the standards and guidelines described in this white paper, I would like to
reiterate the prime directive:

 When you go against a standard, document it. All standards, except for this one, can be broken. If
you do so, you must document why you broke the standard, the potential implications of breaking
the standard, and any conditions that may/must occur before the standard can be applied to this
situation.

A good developer knows that there
is more to development than programming.

A great developer knows that there
is more to development than development.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

53

11.1 Java Naming Conventions
 With a few exceptions discussed below, you should always use full English descriptors when naming
things. Furthermore, you should use lower case letters in general, but capitalize the first letter of class
names and interface names, as well as the first letter of any non-initial word.

 General Concepts:
• Use full English descriptors
• Use terminology applicable to the domain
• Use mixed case to make names readable
• Use short forms sparingly, but if you do so then use them intelligently
• Avoid long names (less than 15 characters is a good idea)
• Avoid names that are similar or differ only in case

 Item Naming Convention Example
 Arguments/
 parameters

 Use a full English description of value/object being passed,
possibly prefixing the name with ‘a’ or ‘an.’ The important
thing is to choose one approach and stick to it.

 customer, account,
 - or -

 aCustomer, anAccount
 Fields/
 fields/
 properties

 Use a full English description of the field, with the first letter
in lower case and the first letter of any non-initial word in
uppercase.

 firstName, lastName,
warpSpeed

 Boolean getter
member
functions

 All boolean getters must be prefixed with the word ‘is.’ If
you follow the naming standard for boolean fields described
above then you simply give it the name of the field.

 isPersistent(),
isString(), isCharacter()

 Classes Use a full English description, with the first letters of all
words capitalized.

 Customer,
SavingsAccount

 Compilation
unit files

 Use the name of the class or interface, or if there is more than
one class in the file than the primary class, prefixed with
‘.java’ to indicate it is a source code file.

 Customer.java,
SavingsAccount.java,
 Singleton.java

 Components/
 widgets

 Use a full English description which describes what the
component is used for with the type of the component
concatenated onto the end.

 okButton, customerList,
fileMenu

 Constructors Use the name of the class. Customer(),
SavingsAccount()

 Destructors Java does not have destructors, but instead will invoke the
finalize() member function before an object is garbage
collected.

 finalize()

 Exceptions It is generally accepted to use the letter ‘e’ to represent
exceptions.

 e

 Final static
fields
(constants)

 Use all uppercase letters with the words separated by
underscores. A better approach is to use final static getter
member functions because it greatly increases flexibility.

 MIN_BALANCE,
DEFAULT_DATE

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

54

 Java Naming Conventions Continued

 Item Naming Convention Example
 Getter member
functions

 Prefix the name of the field being accessed with ‘get.’ getFirstName(),
getLastName(),
getWarpSpeeed()

 Interfaces Use a full English description describing the concept that the
interface encapsulates, with the first letters of all words
capitalized. It is customary to postfix the name with either
‘able,’ ‘ible,’ or ‘er’ but this is not required.

 Runnable, Contactable,
Prompter, Singleton

 Local variables Use full English descriptions with the first letter in lower case
but do not hide existing fields/fields. For example, if you
have a field named ‘firstName’ do not have a local variable
called ‘firstName.’

 grandTotal, customer,
newAccount

 Loop counters It is generally accepted to use the letters i, j, or k, or the name
‘counter.’

 i, j, k, counter

 Packages Use full English descriptions, using mixed case with the first
letter of each word in uppercase, everything else in lower
case. For global packages, reverse the name of your Internet
domain and concatenate to this the package name.

 java.awt,
 com.ambysoft.www.
 persistence.mapping

 Member
Functions

 Use a full English description of what the member function
does, starting with an active verb whenever possible, with
the first letter in lower case.

 openFile(), addAccount()

 Setter member
functions

 Prefix the name of the field being accessed with ‘set’. setFirstName(),
setLastName(),
setWarpSpeed()

 Although I do not agree with the following conventions, Sun suggests that for local variables of the given
types you can give them short names. A much better convention is to use a full English descriptor – Do not
be lazy.

 Variable Type Suggested Naming Convention
 offset off
 length len
 byte b
 char c
 double d
 float f
 long l
 Object o
 String s
 Arbitrary value v

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

55

11.2 Java Documentation Conventions
 A really good rule of thumb to follow regarding documentation is to ask yourself if you’ve never seen the
code before, what information would you need to effectively understand the code in a reasonable amount of
time.

 General Concepts:
• Comments should add to the clarity of your code
• If your program isn’t worth documenting, it probably isn’t worth running
• Avoid decoration, i.e. do not use banner-like comments
• Keep comments simple
• Write the documentation before you write the code
• Document why something is being done, not just what

11.2.1 Java Comment Types
The following chart describes the three types of Java comments and suggested uses for them.

Comment Type Usage Example
Documentation Use documentation comments

immediately before declarations of
interfaces, classes, member functions,
and fields to document them.
Documentation comments are processed
by javadoc, see below, to create external
documentation for a class.

/**
 Customer – A customer is any
 person or organization that we
 sell services and products to.

 @author S.W. Ambler
*/

C style Use C-style comments to document out
lines of code that are no longer
applicable, but that you want to keep just
in case you users change their minds, or
because you want to temporarily turn it
off while debugging.10

/*
 This code was commented out
 by J.T. Kirk on Dec 9, 1997
 because it was replaced by the
 preceding code. Delete it after two
 years if it is still not applicable.

 . . . (the source code)
*/

Single line Use single line comments internally
within member functions to document
business logic, sections of code, and
declarations of temporary variables.

// Apply a 5% discount to all invoices
// over $1000 as defined by the Sarek
// generosity campaign started in
// Feb. of 1995.

10 This isn’t actually a standard, it’s more of a guideline. The important thing is that your organization
should set a standard as to how C-style comments and single-line comments are to be used, and then to
follow that standard consistently.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

56

11.2.2 What To Document
The following chart summarizes what to document regarding each portion of Java code that you write.

Item What to Document
Arguments/
parameters

The type of the parameter
What it should be used for
Any restrictions or preconditions
Examples

Fields/
fields/properties

Its description
Document all applicable invariants
Examples
Concurrency issues
Visibility decisions

Classes The purpose of the class
Known bugs
The development/maintenance history of the class
Document applicable invariants
The concurrency strategy

Compilation units Each class/interface defined in the class, including a brief description
The file name and/or identifying information
Copyright information

Getter member
function

Document why lazy initialization was used, if applicable

Interfaces The purpose
How it should and shouldn’t be used

Local variables Its use/purpose
Member Functions
– Documentation

What and why the member function does what it does
What a member function must be passed as parameters
What a member function returns
Known bugs
Any exceptions that a member function throws
Visibility decisions
How a member function changes the object
Include a history of any code changes
Examples of how to invoke the member function if appropriate
Applicable preconditions and postconditions
Document all concurrency

Member Functions
– Internal
comments

Control structures
Why, as well as what, the code does
Local variables
Difficult or complex code
The processing order

Package The rationale for the package
The classes in the package

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

57

11.3 Java Coding Conventions (General)
There are many conventions and standards which are critical to the maintainability and enhancability of
your Java code. 99.9% of the time it is more important to program for people, your fellow developers, than it
is to program for the machine. Making your code understandable to others is of utmost importance.

Convention
Target Convention
Accessor
member
functions

Consider using lazy initialization for fields in the database
Use accessors for obtaining and modifying all fields
Use accessors for ‘constants”
For collections, add member functions to insert and remove items
Whenever possible, make accessors protected, not public

Fields Fields should always be declared private
Do not directly access fields, instead use accessor member functions
Do not use final static fields (constants), instead use accessor member functions
Do not hide names
Always initialize static fields

Classes Minimize the public and protected interfaces
Define the public interface for a class before you begin coding it
Declare the fields and member functions of a class in the following order:
• constructors
• finalize()
• public member functions
• protected member functions
• private member functions
• private field

 Local variables Do not hide names
 Declare one local variable per line of code
 Document local variables with an endline comment
 Declare local variables immediately before their use
 Use local variables for one thing only

 Member
Functions

 Document your code
 Paragraph your code
 Use whitespace, one line before control structures and two before member function
declarations
 A member function should be understandable in less than thirty seconds
 Write short, single command lines
 Restrict the visibility of a member function as much as possible
 Specify the order of operations

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

58

 Glossary

 100% pure – Effectively a “seal of approval” from Sun that says that a Java applet, application, or package,
will run on ANY platform which supports the Java VM.

 Accessor – A member function that either modifies or returns the value of a field. Also known as an access
modifier. See getter and setter.

 Analysis pattern – A modeling pattern that describes a solution to a business/domain problem.

 Antipattern – An approach to solving a common problem, an approach that in time proves to be wrong or
highly ineffective.

 Argument – See parameter.

 Attribute – A variable, either a literal data type or another object, that describes a class or an instance of a
class. Instance fields describe objects (instances) and static fields describe classes. Fields are also referred
to as fields, field variables, and properties.

 BDK – Beans development kit.

 Block – A collection of zero or more statements enclosed in (curly) braces.

 Braces – The characters { and }, known as an open brace and a close brace respectively, are used to define
the beginning and end of a block. Braces are also referred to as ‘curlies’ (do not ask).

 Class – A definition, or template, from which objects are instantiated.

 Class testing – The act of ensuring that a class and its instances (objects) perform as defined.

 Compilation unit – A source code file, either a physical one on disk or a “virtual” one stored in a database,
in which classes and interfaces are declared.

 Component – A user interface item such as a list, button, or window.

 Constant getter – A getter member function which returns the value of a “constant,” which may in turn be
hard coded or calculated if need be.

 Constructor – A member function which performs any necessary initialization when an object is created.

 Containment – An object contains other objects that it collaborates with to perform its behaviors. This can
be accomplished either the use of inner classes (JDK 1.1+) or the aggregation of instances of other classes
within an object (JDK 1.0+).

 CPU – Central processing unit.

 C-style comments – A Java comment format, /* … */, adopted from the C/C++ language that can be used to
create multiple-line comments. Commonly used to “document out” unneeded or unwanted lines of code
during testing.

 Design pattern – A modeling pattern that describes a solution to a design problem.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

59

 Destructor – A C++ class member function that is used to remove an object from memory once it is no
longer needed. Because Java manages its own memory, this kind of member function is not needed. Java
does, however, support a member function called finalize() that is similar in concept.

 Documentation comments – A Java comment format, /** … */, that can be processed by javadoc to provide
external documentation for a class file. The main documentation for interfaces, classes, member functions,
and fields should be written with documentation comments.

 Field – See attribute.

 finalize() – A member function that is automatically invoked during garbage collection before an object is
removed from memory. The purpose of this member function is to do any necessary cleanup, such as the
closing of open files.

 Garbage collection – The automatic management of memory where objects that are no longer referenced are
automatically removed from memory.

 Getter – A type of accessor member function that returns the value of a field. A getter can be used to
answer the value of a constant, which is often preferable to implementing the constant as a static field
because this is a more flexible approach.

 HTML – Hypertext markup language, an industry-standard format for creating web pages.

 Indenting – See paragraphing.

 Inline comments – The use of a line comment to document a line of source code where the comment
immediate follows the code on the same line as the code. Single line comments are typically used for this,
although C-style comments can also be employed.

 Interface – The definition of a common signature, including both member functions and fields, which a class
that implements an interface must support. Interfaces promote polymorphism by composition.

 I/O – Input/output.

 Invariant – A set of assertions about an instance or class that must be true at all "stable" times, the periods
before and after the invocation of a member function on the object/class.

 Java – An industry-standard object-oriented development language that is well-suited for developing
applications for the Internet and applications that must operate on a wide variety of computing platforms.

 javadoc – A utility included in the JDK that processes a Java source code file and produces an external
document, in HTML format, describing the contents of the source code file based on the documentation
comments in the code file.

 JDK – Java development kit.

 Lazy initialization – A technique in which a field is initialized in its corresponding getter member function
the first time that it is needed. Lazy initialization is used when a field is not commonly needed and it either
requires a large amount of memory to store or it needs to be read in from permanent storage.

 Local variable – A variable that is defined within the scope of a block, often a member function. The scope
of a local variable is the block in which it is defined.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

60

 Master test/quality assurance(QA) plan – A document that describes your testing and quality assurance
policies and procedures, as well as the detailed test plans for each portion of your application.

 Member Function – A piece of executable code that is associated with a class, or the instances of a class.
Think of a member function as the object-oriented equivalent of a function.

 Member function signature – See signature.

 Method testing – The act of ensuring that a member function (method) performs as defined.

 Modeling pattern – A pattern depicting a solution, typically in the form of a class model, to a common
modeling problem.

 Name hiding – This refers to the practice of using the same, or at least similar, name for a
field/variable/argument as for one of higher scope. The most common abuse of name hiding is to name a
local variable the same as an instance field. Name hiding should be avoided as it makes your code harder to
understand and prone to bugs.

 Overload – A member function is said to be overloaded when it is defined more than once in the same class
(or in a subclass), the only difference being the signature of each definition.

 Override – A member function is said to be overridden when it is redefined in a subclass and it has the same
signature as the original definition.

 Package – A collection of related classes.

 Paragraphing – A technique where you indent the code within the scope of a code block by one unit,
usually a horizontal tab, so as to distinguish it from the code outside of the code block. Paragraphing helps
to increase the readability of your code.

 Parameter – An argument passed to a member function. A parameter may be a defined type, such as a
string or an int, or an object.

 Pattern – The description of a general solution to a common problem or issue from which a detailed solution
to a specific problem may be determined. Software development patterns come in many flavors, including
but not limited to analysis patterns, design patterns, and process patterns.

 Postcondition – A property or assertion that will be true after a member function is finished running.

 Precondition – A constraint under which a member function will function properly.

 Process pattern – A pattern that describes a proven, successful approach and/or series of actions for
developing software.

 Property – See field.

 Quality assurance (QA) – The process of ensuring that the efforts of a project meet or exceed the standards
expected of them.

 Setter – An accessor member function that sets the value of a field.

 Signature – The combination of the type of parameters, if any, and their order that must be passed to a
member function. Also called the member function signature.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

61

 Single-line comments – A Java comment format, // … , adopted from the C/C++ language that is commonly
used for the internal member function documentation of business logic.

 Tags – A convention for marking specified sections of documentation comments that will be processed by
javadoc to produce professional-looking comments. Examples of tags include @see and @author.

 Test harness – A collection of member functions for testing your code

 UML – Unified modeling language, an industry standard modeling notation.

 Visibility – A technique that is used to indicate the level of encapsulation of a class, member function, or
field. The keywords public, protected, and private can be used to define visibility.

 Whitespace – Blank lines, spaces, and tabs added to your code to increase its readability.

 Widget – See component.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

62

 References and Suggested Reading

 Ambler, S.W. (1998a). Building Object Applications That Work: Your Step-By-Step Handbook for
Developing Robust Systems with Object Technology. New York: Cambridge University Press.

 Ambler, S.W. (1998b). Process Patterns: Building Large-Scale Systems Using Object Technology. New
York: Cambridge University Press.

 Ambler, S.W. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: Cambridge University Press.

Ambler, S.W. (2000a). The Unified Process Inception Phase. Gilroy, CA: R&D Books.

Ambler, S.W. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: R&D Books.

Ambler, S.W. (2000c). The Unified Process Construction Phase. Gilroy, CA: R&D Books.

 Ambler, S.W. (2000d). The Object Primer 2nd Edition: The Application Developer’s Guide to Object
Orientation. New York: Cambridge University Press.

 Arnold, K. & Gosling, J. (1998). The Java Programming Language 2 nd Edition. Reading, MA: Addison
Wesley Longman Inc.

 Campione, M and Walrath, K (1998). The Java Tutorial Second Edition: Object-Oriented Programming for
the Internet. Reading, MA: Addison Wesley Longman Inc.

 Chan, P. and Lee, R. (1997). The Java Class Libraries: An Annotated Reference. Reading, MA: Addison
Wesley Longman Inc.

 Coad, P. and Mayfield, M. (1997). Java Design: Building Better Apps & Applets. Upper Saddle River, NJ:
Prentice Hall Inc.

 DeSoto, A. (1997). Using the Beans Development Kit 1.0 February 1997: A Tutorial. Sun Microsystems.

 Gosling, J., Joy, B., Steele, G. (1996). The Java Language Specification. Reading, MA: Addison Wesley
Longman Inc.

 Grand, M. (1997). Java Language Reference. Sebastopol, CA: O’Reilly & Associates, Inc.

 Heller, P. and Roberts, S. (1997). Java 1.1 Developer’s Handbook . San Francisco: Sybex Inc.

 Kanerva, J. (1997). The Java FAQ. Reading, MA: Addison Wesley Longman Inc.

 Koenig, A. (1997). The Importance – and Hazards – of Performance Measurement. New York: SIGS
Publications, Journal of Object-Oriented Programming, January, 1997, 9(8), pp. 58-60.

 Laffra, C. (1997). Advanced Java: Idioms, Pitfalls, Styles and Programming Tips. Upper Saddle River, NJ:
Prentice Hall Inc.

 Langr, J. (1999). Essential Java Style: Patterns for Implementation. Upper Saddle River, NJ: Prentice Hall
Inc.

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

63

 Larman, C. & Guthrie, R. (1999). Java 2 Performance and Idiom Guide. Upper Saddle River, NJ: Prentice Hall
Inc.

 Lea, D. (1996). Draft Java Coding Standard . http://g.oswego.edu/dl/html/javaCodingStd.html

 Lea, D. (1997). Concurrent Programming in Java: Design Principles and Patterns. Reading, MA: Addison
Wesley Longman Inc.

 McConnell, S. (1993). Code Complete – A Practical Handbook of Software Construction. Redmond, WA:
Microsoft Press.

 McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Redmond, WA: Microsoft
Press.

 Meyer, B. (1988). Object-Oriented Software Construction. Upper Saddle River, NJ: Prentice Hall Inc.

 Meyer, B. (1997). Object-Oriented Software Construction, Second Edition. Upper Saddle River, NJ:
Prentice-Hall PTR.

 Nagler, J. (1995). Coding Style and Good Computing Practices.
http://wizard.ucr.edu/~nagler/coding_style.html

 NPS (1996). Java Style Guide. United States Naval Postgraduate School.
http://dubhe.cc.nps.navy.mil/~java/course/styleguide.html

 Niemeyer, P. and Peck, J. (1996). Exploring Java. Sebastopol, CA: O’Reilly & Associates, Inc.

 Sandvik, K. (1996). Java Coding Style Guidelines. http://reality.sgi.com/sandvik/JavaGuidelines.html

 Sun Microsystems (1996). javadoc – The Java API Documentation Generator. Sun Microsystems.

 Sun Microsystems (1997). 100% Pure Java Cookbook for Java Developers – Rules and Hints for
Maximizing the Portability of Java Programs. Sun Microsystems.

 Warren, N. & Bishop, P. (1999). Java in Practice: Design Styles and Idioms for Effective Java. Reading,
MA: Addison Wesley Longman Inc.

 Vanhelsuwe, L. (1997). Mastering Java Beans. San Francisco: Sybex Inc.

Vermeulen, A., Ambler, S.W., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J., & Thompson, P. (2000). The
Elements of Java Style. New York: Cambridge University Press.

 Vision 2000 CCS Package and Application Team (1996). Coding Standards for C, C++, and Java.
http://v2ma09.gsfc.nasa.gov/coding_standards.html

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

64

12. About the Author
Scott W. Ambler is a Software Process Mentor living in Newmarket, Ontario, 45 km north of Toronto,
Canada and is President of Ronin International (www.ronin-intl.com) a consulting firm specializing in object-
oriented architecture, software process, and Enterprise JavaBeans (EJB) development. He has worked with
OO technology since 1990 in various roles: Business Architect, System Analyst, System Designer, Process
Mentor, Lead Modeler, Smalltalk Programmer, Java Programmer, and C++ Programmer. He has also been
active in education and training as both a formal trainer and as an object mentor.

Scott has a Master of Information Science and a Bachelor of Computer Science from the University of
Toronto. He is the author of the best-selling books The Object Primer, Building Object Applications That
Work, Process Patterns, and More Process Patterns and co-author of The Elements of Java Style, all of
which are published by Cambridge University Press (www.cup.org). Scott is also editor of The Unified
Process Series from R&D Books (www.rdbooks.com) to be published in 2000. Scott is a contributing editor
and columnist with Software Development (http://www.sdmagazine.com) and writes columns for Computing
Canada (http://www.plesman.com).

He can be reached via e-mail at:
scott@ambysoft.com
scott.ambler@ronin-intl.com

Visit his personal web site:
http://www.AmbySoft.com

Visit his corporate web site:
http://www.ronin-intl.com

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

65

13. Index

@

@author tag .. 5
@concurrency tag (proposed)............................. 53
@deprecated tag .. 5
@example tag (proposed)..................................... 53
@exception tag... 5

usage.. 10
@fyi tag (proposed)... 53
@history tag (proposed)....................................... 53
@modifies tag (proposed).................................... 53
@param tag ... 5

usage.. 10
@postcondition tag (proposed) 53
@precondition tag (proposed)............................. 53
@return tag ... 5

usage.. 10
@see tag .. 5
@since tag... 5
@version tag... 5

1

100% pure
definition ... 62

A

Abbreviation
usage.. 2

Accessor member function................................... 22
advantages and disadvantages 29
constant getters ... 25
definition ... 62
for collections... 27
getters .. 7
overhead of... 22
setter member functions...................................... 8
visibility... 28

Acronym
naming convention.. 2, 17

Ambler's Law of Standards..................................... 6
Analysis pattern ... 62
Analysis patterns ... 37
Antipattern .. 62
Antipatterns .. 52
Architecture .. 37
Argument...See parameter
Assertions ... 6
Attribute

accessors ... 22, 23

and lazy initialization ... 24
definition ... 62
documenting... 22
getter.. 23
getter member functions 22
initialization... 24
name hiding... 20
naming conventions.. 17
setter .. 23
setter member functions.................................... 22
visibility... 21

Author
contacting ... 68

B

Banner comments ... 3
BDK.. 62
Block

definition ... 62
Book

Elements of Java Style............................. 6, 13, 37
Process Patterns... 30, 47

Braces
definition ... 62
documentation of... 13

C

Class... 36
definition ... 62
documentation conventions 37
naming conventions.. 36

Class testing.. 62
Clean code... 13
Code clarity ... 3
Code history.. 10
Code inspections.. 50
Coding standards

classes ... 36
compilation units.. 44
for local variables ... 31
for member functions... 7
importance of.. 1
interfaces ... 41
packages.. 42
parameters ... 34
using them effectively 50

Collections
accessor member functions.............................. 27

Comments

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

66

banner style .. 3
in member functions .. 9
types of.. 4

Compilation unit
coding standards ... 44
definition ... 62
documentation conventions 44
naming conventions.. 44

Complex code.. 12
Component

definition ... 62
naming conventions.. 18

Component design... 36
Concurrency.. 6

and setter member functions............................ 29
documentation of................................... 11, 22, 37
notifyAll .. 29

Constant getter... 25
definition ... 62

Constants
naming conventions.. 19

Constructor
definition ... 62

Containment
definition ... 62

Control structures .. 11
Copyright... 55
Corporate guidelines.. 55
Coupling

and accessors ... 29
and inheritance... 29

C-style comments ... 4
definition ... 63
usage.. 11

D

Databases .. 37
Default visibility ... 9
Design first.. 51
Design pattern .. 63
Design patterns .. 37
Destructor

definition ... 63
Develop in small steps... 51
Distributed design.. 37
doclets.. 55
Documentation

clarity ... 3
code history .. 10
concurrency.. 11, 22
internal... 11
of attributes... 22
of closing braces .. 13

of complex code.. 12
of local variables .. 33
of member functions.. 9
of processing order.. 12
overview.. 3
parameters ... 35
why... 3, 9

Documentation comments 4
definition ... 63

Documentation conventions
classes ... 37
compilation units.. 44
interfaces ... 41
packages.. 42

E

Encapsulation
and accessor member functions 29

End of line comments... 4
Endline comment .. 13, 15, 33
Endline comments .. 4
English descriptors .. 2
Example source code.. 6
Exception handling... 6
Exception objects ... 32
Extreme Programming... 13

F

Field ..See attribute
finalize() member function

definition ... 63
FLOOT... 13, 49
Fragile base class problem.................................... 29
Friendly visibility..................See package visibility
Full Lifecycle Object-Oriented Testing......... 13, 49

G

Garbage collection
definition ... 63

Getter member function ... 22
advantages and disadvantages 29
and lazy initialization ... 24
definition ... 63
for constants ... 25
naming conventions...................................... 7, 23

H

HTML
definition ... 63

Hungarian notation.. 17
postfix.. 18
prefix... 18

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

67

I

Idioms ... 52
Indenting See paragraphing
Inheritance

coupling... 29
Inline comments

definition ... 63
disadvantages .. 4

Interface... 41
definition ... 63
documentation convention 41
naming conventions.. 41

Invariant
definition ... 63
documentation of... 37

J

Java
definition ... 63

javadoc... 5
and member functions....................................... 10
definition ... 63
doclets ... 55
proposed tags... 53
tags... 5

javadoc tags ... See tags
JDK... 64

K

KISS.. 52

L

Lazy initialization.. 24
definition ... 64
documentation.. 24

Local variable
coding standards ... 31
declaring.. 33
definition ... 64
documentation of... 11
documenting... 33

Long names ... 2
Loop counters... 31

M

Maintenance
and parenthesis .. 15
cost of.. 1

Master test/QA plan.. 64
Member Function

accessors ... 22
coding standards ... 7
definition ... 64

documentation.. 9
getter.. 22
internal documentation 11
setter .. 22
visibility... 9

Member Function signature See signature
Metrics ... 37
Mixed case... 2
Modeling pattern.. 64
Multi-line statements ... 14
Mutator.....See Setter member function. See setter

N

Name hiding .. 20
definition ... 64

Naming conventions
accessor member functions.............................. 23
accessors ... 7
attributes ... 17
classes ... 36
compilation units.. 44
components .. 18
constants ... 19
exception objects ... 32
for parameters ... 34
getter member functions 7, 23
hungarian notation .. 18
interfaces ... 41
local variables ... 31
loop counters .. 31
member functions... 7
overview.. 2
packages.. 42
setter member functions................................ 8, 23
streams ... 31

notifyAll... 29

O

Object databases .. 37
Object-Oriented Software Process....................... 13
OOSP.. 13
Optimization

and portability .. 47
factors .. 47
leave to end... 46

Order of operations.. 15
Overload

definition ... 64
Override

definition ... 64

P

Package.. 42

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

68

definition ... 64
documentation conventions 42
naming conventions.. 42

Package visibility.. 9, 36
Paragraphing... 14

definition ... 64
Parameter

definition ... 64
documentation conventions 35
documentation of... 10
naming convention.. 34

Parameters ... 34
Pattern .. 64
Patterns.. 52
Plan

master test/QA plan... 64
Portability

and optimization... 47
Postcondition

definition ... 64
documentation of... 10

Precondition
definition ... 65
documentation of... 10

Prime Directive.. 1
Private visibility.. 9
Process pattern ... 65
Process Patterns Resource Page.......................... 52
Processing order

documentation of... 12
Property ...See attribute
Protected visibility ... 9
Public interface

of a class.. 40
Public visibility ... 9, 36
Punch cards... 15
Punctuation

multi-line statements.. 14

Q

Quality assurance... 50
Quality assurance (QA)... 65

R

Relational databases .. 37

S

Scott Ambler
contacting ... 68

Setter member function.. 22
advantages and disadvantages 29
definition ... 65
naming conventions...................................... 8, 23

Short forms .. 2, 57
Signature

definition ... 65
Single letter names ... 31
Single-line comments ... 4

definition ... 65
usage.. 11

Standard
Ambler's law.. 6

Static initializers .. 30
Streams ... 31
Synchronization.. 6

T

Tags.. 5
definition ... 65
proposed ... 53

Test harnesses .. 49
Test In The Large... 49
Test In The Small.. 49
Testing... 49

class testing.. 62
method testing.. 64

Thirty-second rule.. 15
Tips

access to attributes .. 23
beware endline comments................................... 4
define the public interface first 40
define your priorities ... 47
document closing braces 13
set component naming standards 19
use interfaces for parameter types 35

Traceability.. 49
Type safety ... 6

U

UML... 65
Underscores .. 18
Unified Modeling Language................................. 13
Unified Process... 13
Users

working closely with.. 51

V

Visibility
definition ... 65
of accessor member functions 28
of attributes... 21
of member functions.. 9

W

Whitespace ... 15
definition ... 65

www.AmbySoft.com/javaCodingStandards.pdf

Copyright 1998-2000 AmbySoft Inc.

69

Why
documentation of... 3, 11

Widget ..See component

X

XP ... 13

