www.AmbySoft.com/javaCodingStandar ds.pdf

Writing Robust Java Code

The AmbySoft Inc. Coding Standardsfor Java
v17.01d

Scott W. Ambler
Softwar e Process M entor

ThisVersion: January 15, 2000

Copyright 1998-1999 AmbySoft I nc.

www.AmbySoft.com/javaCodingStandar ds.pdf

This page |eft unintentiondly blank.
(yuk yuk yuk)

Copyright 1998-1999 AmbySoft I nc.

www.AmbySoft.com/javaCodingStandar ds.pdf

Purpose of this White Paper

Thiswhite paper describes a collection of standards, conventions, and guidelines for writing solid Java
code. They are based on sound, proven software engineering principles that |ead to code that is easy to
understand, to maintain, and to enhance. Furthermore, by following these coding standards your
productivity as a Java developer should increase remarkably — Experience shows that by taking the time to
write high-quality code right from the start you will have amuch easier time modifying it during the
development process. Finally, following a common set of coding standards leads to greater consistency,
making teams of developers significantly more productive.

I mportant Features of ThisWhite Paper
Existing standards from the industry are used wherever possible — Y ou can reuse more than just code.
The reasoning behind each standard is explained so that you understand why you should follow it.
Viable alternatives, where available, are also presented along with their advantages and disadvantages
so that you understand the tradeoffs that have been made.
The standards presented in this white paper are based on real-world experience from numerous object-
oriented development projects. This stuff worksin practice, not just theory.
These standards are based on proven software-engineering principles that lead to improved
development productivity, greater maintainability, and greater enhancability.

Target Audience

Professional software developerswho areinterested in:
Writing Java code that is easy to maintain and to enhance
Increasing their productivity
Working as productive members of a Java development team

Help Melmprove These Standards
Because | welcome your input and feedback, please feel free to email me at scott@ambysoft.comwith your
comments and suggestions. Let’swork together and learn from one another.

Acknowledgments
The following people have provided valuable input into the development and improvement of these
standards, and | would like to recognize them for it.

Stephan Marceau Lyle Thompson David Pinn Larry Virden
Eva Greff Wayne Conrad Michael Appelmans William Gilbert
Graham Wright Alex Santos Kiran Addepalli Brian Smith
Larry Allen Dick Salisbury Bruce Conrad Michael Finney
John Pinto Vijay Eluri Carl Zimmerman Hakan Soderstrom
Bill Siggelkow Camille Bell Fredrik Nystrom Cory Radcliff
Kathy Eckman Guy Sharf Scott Harper

KyleLarson Robert Marshall Peter C.M. Haight

Mark Brouwer Gerard Broeksteeg ~ Helen Gilmore

Scott W. Ambler

January 2000

Copyright 1998-1999 AmbySoft I nc.

www.AmbySoft.com/javaCodingStandar ds.pdf

This page d<o left unintentiondly blank.
(dthough now it isn't quite as funny)

Copyright 1998-1999 AmbySoft I nc.

www.AmbySoft.com/javaCodingStandar ds.pdf i

Table of Contents

1. GENERAL CONCEPTS.......cotteitteitieersee et stss et ees s ss sttt s e ssans 1
11 WHY CODING STANDARDS ARE IMPORTANT w..cvttiirsierreersesessessssesemssssessssesssssss s sssessessssessssessesssnessens 1
12 THE PRIME DIRECTIVE .. cctiuettrettreisesseessessssesessessssses st sss s sssssssessssssssssssssssnssssssesssesssssssssssans 1
13 WHAT MAKESUP A GOOD NAMEcttieiiieerirerersssessses et sssssssssssssssssss s sssessssssssssssssssssessens 2
14 GOOD DOCUMENTATION ... vuttearsesrseersess s ssessessssessssessssesessesssssssesssssssssssessnsesas 3

1.41 TheThree Types Of JaVa COMMENLS ..ot esse s s ssesesseseens 4
1.42 AQuick Overview of javadoc..........ccouureeerrererrecrnenns
15 AMBLERSLAW OF STANDARDS

2. STANDARDSFOR MEMBER FUNCTIONS........cooteinertre i ssssessssssssssss s ssssesssessesssans 7

21 NAMING MEMBER FUNCTIONS.....cotueutieentrreserseeersessssessssessesessessssesesssss s ssssssssssesssssssessssesssssssesssssssessssssens 7

2.1.1 Naming AcCeSSOr MembEr FUNCLIONS.........cicrricirieirieeeieeesisesr e sess s sssenans 7

2 O O R = 1= ST T 7
21111 Alternative Naming Convention for Getters — Has and Can

2112 Setters......c..
2113 Constructors
22 MEMBER FUNCTION VISIBILITY wocvtieitiretreserneeersesessessssessesessessssessssesesssssssssssss s ssssssssesssssssessssessessssssnns
23 DOCUMENTING MEMBER FUNCTIONS.....cotirierieeressssessesessesssseses st sssessssssss s ssssessssessssssesssssssessssssens
2.3.1 TheMember FUNCLION HEAAEcoiiiricricirecricrc st es s
2.3.2 INternal DOCUMENTALION.........cvieeuireecrieerree ettt
24 TECHNIQUESFOR WRITING CLEAN CODE
24.1 Document YOUr COE.........conmrreirneerneerseerresereeseneenes
2.4.2 Paragraph/Indent Your Code........cccocenerrerernenerrencereenn:
2.4.3 Paragraph and Punctuate Multi-Line SEtemMENTS.........covereiernirneerneee e sessesessessssesenns
2.4.4 Use WhIteSpace iN YOUI COUE........currieeriieerreeee ettt nsss s sessssssnssssnssssns
245 Follow The Thirty-SeCoNd RUIE...........cccciierercrcee e
24.6 Write Short, Sngle CommMaNd LiNES.........cccieinnnieeeiesiess e sessessssessssssenns
247 Specify the Order of Operations..........cccveeeereeereene
25 JAVA CODING TIPS....coomiernirmiremsrsmerneersesessesesseessseeessssees
251 Organize Your Code Sensibly.......ccouemeerncrrencrnecereenne
25.2 Place Constants on the Left Sde of Comparisons

3. STANDARDSFOR FIELDS (ATTRIBUTES/PROPERTIES)........ccconinrniinesineeneeeese s ssessesessesenns 16

31 NAMING FIELDS....cteteeieerieririeeneseststeseses e seeseseesesesssssseesessesesessssesesesssssssnsssssenssesesesssessesenssssasensssnsessnsssnsens
3.1.1 UseaFull English Descriptor for Field Names.......
3111 Alternative—Hungarian Notationc.cccccevneene.
3112 Alternative—Leading or Trailing Underscores
3.1.2 Naming Components (WITGQELS)ccvuereerrierreree it sessssssssssnnes
3121 Alternative for Naming Components — Hungarian NOtation...........cccoveerrnreennneenenneeenens 17
3.1.22 Alternative for Naming Components — Postfix-Hungarian Notation.........c.c.ccceveevnennecenens 17
3. 1.3 NAMING CONSLANTS.......ccvieeeieeiieertreeer e ses e ses et s e
314 NamMiNG COIECLIONS........ciireirreereeeree et
3141 Alternative for Naming Collections — The ‘ Some’ Approach
315 DONOL“ HIOE" NAIMES......oriirreeerreeerieeerere e ssaes
32 FIELD VISIBILITY tetoteteuteserieuenesesessesesesteseesssessasessssasenesessessssssssessssssesessnsssesenssssesssssessesenssssasensssnsessnsssnsens
33 DOCUMENTING A FIELD .eotiteteiirieteesestesieseseesesesessssesesessesssessssssssesssssssssssssessssssesssssessesensssssssensssssessnsssnsens
34 THE USE OF ACCESSOR MEMBER FUNCTIONS.....c.coitiuitririeteneseseeseeseseesesessssesesssssessssssesssessessnssessesenes
AL NAMING ACCESSOI Scoueuierieerieesteestresssr s sesessesssses s s s st s s aeae s s s s s s s s nesenais
3.4.2 Advanced Techniquesfor ACCESSOrS........cvueurieeeienes
3421 LAZY INITIBIHZAIION.ceeeeeieeecteiee et

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf ii

3422 GEtterS fOr CONSLANTS......cciireeieiierieieie sttt ettt sttt bttt nbenen
3423 ACCESSOrS fOr COlIECLIONS. ...ttt
3.4.24 Accessing Several Fields Simultaneously
3.4.3 ViSIDIlity Of ACCESSOIS.....coovieciriieiecietrissse sttt s st s et ee s s st s s snsen
344 WWHY USE ACCESSOIS? ...ucueeerreeerssessssessessssssssssssssessssssssessssssssessssssssasssssssssssssssssessssssssessssssssesesssssesssssssnss 28
3.4.5 Why SHoUIAN't YOU USE ACCESSOIS?cucuererrerieiieisseessesssssessessssssssssssssssssssssessssssssessssssssssssssssessssssssnss 28
35 ALWAYSINITIALIZE STATIC FIELDS..oiiceieee ettt ses e s s e e se s e s et s 29

4. STANDARDSFOR LOCAL VARIABLES ... 30

41 NAMING LOCAL VARIABLES.......ctuttrtuetrteetrttetetsssessesssessssesesstssssssessssssssisssstsssssssssessessssessssssssssssssssssssssesnes
g I O =T 0 o S = T OO
4.1.2 Naming LOOP COUNLETS......ccovvreeirrerreeereresesesesesssssessessssssssesssssesnens
4.1.3 Naming EXception ODJECES........ccovveereerereinerressss s
4.1.4 Badldeasfor Naming LOcal Variabl€s...........cccumrrrrernenieeisrescsis s sssessssssssssssssssssssseseens
42 DECLARING AND DOCUMENTING LOCAL VARIABLES
421 General Comments ADOUL DECIAratiON........c.oovuriuririueinieeiieeieireet et

5. STANDARDSFOR PARAMETERS (ARGUMENTS) TO MEMBER FUNCTIONS.........coconneeneereeneenees 33

51 NAMING PARAMETERS......couuriurimerierteseesessesssssssssesssessssnssssssssssassassssans 33
5.1.1 Alternative— Prefix Parameter Nameswith ‘@’ OF ‘an’ ... 33
5.1.2 Alternative — Name Parameters Based 0N Their TYPE.......cccccevurerenereseenenesienesesssssesssssessesessenes 33
5.1.3 Alternative — Name Parameters The Same as Their Corresponding Fields (if any) 34

5.2 DOCUMENTING PARAMETERS......cituitteetesesesessssssessessssssssssssssssssssassssssssssssssssssssssssssesssssssssssssssssassssans A

6. STANDARDSFOR CLASSES, INTERFACES, PACKAGES, AND COMPILATION UNITS.............. 35

6.1 STANDARDS FOR CLASSES.....ccuuttetutteesetsesessesessesssstsessesssssssssssssssbessstssssssesssssssesesssssssssssssssssssssssssssesssesaees
(200 0 R = TS = o 1 /TR
6.1.2 NAMING ClASSES....coeuiiieeerereesetririssssiessessssssesesssstessesssssessesssssessssssssesssssssssssssssssessssssssesssssssessssssssessssssssnss
6.1.3 Documenting @ ClasS.......cccouerrirrerininenseenssesssisssessssssssessssssssesssnsees
6.1.4 ClassDeclarations

6.1.41 Apply The“final” Keyword Sensibly
6.1.4.2 Ordering Member FUNctions and Fields.........cociieiiiicieseie e
6.1.5 Minimizethe Public and Protected INtErface ...

6.2 STANDARDS FOR INTERFACES......ccstueteuetreeeeseeseseesessesessesessssssssssessns
6.2.1 Naming INtErfaces.......ccovvvierrnrcsrreeesese s sesssesens
6.2.2 Documenting INterfaces......covvrmrereesnersessessseeesesssessesesssneens

6.3 STANDARDS FOR PACKAGES......cocutteintresetsese st astsesstssessisessisessbsesssssssbsess st sessssessssssssssssssssssssssssssssesaees
6.3.1 NAMING PACKAGESccererereetririieriesesssesesessstessesssssessessssssssesssssesssssssssssssssssessssssssessssssssessssssssessssssssnss
6.3.2 Documenting a Package

6.4 STANDARDS FOR COMPILATION UNITS .ottt sess s sesessesss st sssesnes
6.4.1 Naming a Compilation UNit........ccooiiernericeiercsesessssssessss e ssssssssesssssessssssssesssssssssssssssssessssssssnes
6.4.2 Documenting a Compilation UNit........cccoeeeieireineninssesssssesesesessssssssssessssssssssssssssssssssesssssssenes

7. MISCELLANEOUS STANDARDS/ISSUES........cccoirmrereressessesenensssssssssssssesssssssessesssssssssssssssesssees

71 REUSE ...o.cottiuiseis ettt ees s s bbb s s bt

7.2 USEWILD CARDSWHEN IMPORTING CLASSES......ccovuiuierieeeresessssisssens
7.2.1 Alternative— Explicitly Specify Each Imported Class

7.3 OPTIMIZING JAVA CODE......ccsuriereenersesesissessississssssssssesssssssssssssssssens

74 WRITING JAVA TEST HARNESSES......cetriueereeeeesetsetsesssssessessssessesssssssssssssssssssssssssessessessssssssssssssssssessessans

8. THE SECRETSOF SUCCESS........cooiiiiiisis s s s a7

81 USING THESE STANDARDS EFFECTIVELY ..cutuitiiriiereerreseseseesesssssssesessssssesessssssessssesesessssssssssssessessassessens
82 OTHER FACTORS THAT LEAD TO SUCCESSFUL CODE

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf iii

9. PROPOSED JAVADOC TAGSFOR MEMBER FUNCTIONS..........ccooninnne s 50
10. WHERE TO GO FROM HERE........ccoiiiiinii s s saes 51
101 CREATING YOUR OWN INTERNAL CORPORATE GUIDELINES?.....cocvvtvirereririresesisisesesssesesesssesesesssenenes 51

10.1.1 USINg ThISPDF Fil€....cccierircrrecce et
10.1.2 Obtaining the Source Document for ThisFile

11, SUMMARY bbb s

111 JAVA NAMING CONVENTIONS....cucuiueerteeeseereseesesessessssesessessssesssstssessssessessssssssssasssssssssssssssssssssssssssssssssssssaes
112 JAVA DOCUMENTATION CONVENTIONS...ccutuetreeereeresesseeeseseeseneens

11.2.1 Java Comment TYPES.....ccvvrirririnirisissisesis s isssssesssssssssseseens

11.2.2 WAt TO DOCUMENL.......ccceteerireeerereeeeisesessssesssessssssssesssssessesessssssssesssessssesssssessssssssessssssssessssssssessssnssnss
113 JAVA CODING CONVENTIONS (GENERAL) ...cttreutreutrenetseesesessestesessesessisessissss s sssss s ssesssssssssssssssssssssnes

GLOSSARY ..o bbb bbb b 58

REFERENCES AND SUGGESTED READING........cooiisi s ssss s 62

12, ABOUT THE AUTHOR ...t bbb s 64

13. INDEX o s 65

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 1

1. General Concepts

I’d like to start this white paper with a discussion of some general conceptsthat | feel are important for
coding standards. | begin with the importance of coding standards, propose the “ Prime Directive’ for
standards, and then follow with the factors that lead to good names and good documentation. This section
will set the stage for the rest of thiswhite paper, which covers standards and guidelines for Java coding.

1.1 Why Coding Standards are Important

Coding standards for Java are important because they |ead to greater consistency within your code and the
code of your teammates. Greater consistency |eads to code that is easier to understand, which in turn
meansit is easier to develop and to maintain. Thisreduces the overall cost of the applications that you
create.

Y ou have to remember that your Java code will exist for along time, long after you have moved on to other
projects. Animportant goal during development isto ensure that you can transition your work to another
developer, or to another team of developers, so that they can continue to maintain and enhance your work
without having to invest an unreasonabl e effort to understand your code. Code that isdifficult to
understand runs the risk of being scrapped and rewritten — | wouldn't be proud of the fact that my code
needed to be rewritten, would you? If everyoneisdoing their own thing then it makesit very difficult to
share code between devel opers, raising the cost of development and maintenance.

Inexperienced devel opers, and cowboys who do not know any better, will often fight having to follow
standards. They claim they can code faster if they do it their own way. Pure hogwash. They MIGHT be
able to get code out the door faster, but | doubt it. Cowboy programmers get hung up during testing when
several difficult-to-find bugs crop up, and when their code needs to be enhanced it often leads to amajor
rewrite by them because they’ re the only ones who understand their code. Isthisthe way that you want to
operate? | certainly do not.

1.2 The Prime Directive

No standard is perfect and no standard is applicable to all situations: sometimes you find yourself in a
situation where one or more standards do not apply. Thisleads meto introduce what | consider to be the
prime directive of standards:;

When you go againgt a standard, document it. All standards, except for this one, can be broken. If
you do so, you must document why you broke the standard, the potential implications of breaking
the standard, and any conditions that may/must occur before the standard can be applied to this
situation.

The bottom line is that you need to understand each standard, understand when to apply them, and just as
importantly when not to apply them.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 2

1.3 What Makes Up a Good Name

We will be discussing naming conventions throughout the standards, so let’s set the stage with afew
basics:

1

Usefull English descriptors® that accurately describethe variableffield/class/... For example, use
names like firstName, grandTotal, or Cor porateCustomer. Although nameslike x1, y1, or fn are easy
to type because they’ re short, they do not provide any indication of what they represent and result in
code that is difficult to understand, maintain, and enhance (Nagler, 1995; Ambler, 1998a).

Useterminology applicabletothedomain. If your usersrefer to their clients as customers, then use the
term Customer for the class, not Client. Many developerswill make the mistake of creating generic
terms for concepts when perfectly good terms already exist in the industry/domain.

Use mixed caseto make namesreadable. Y ou should uselower case lettersin general, but capitalize
thefirst letter of class names and interface names, as well asthefirst letter of any non-initial word
(Kanerva, 1997).

Use abbreviations sparingly, but if you do so then usethem intelligently. This meansyou should
maintain alist of standard short forms (abbreviations), you should choose them wisely, and you should
use them consistently. For example, if you want to use a short form for the word “ number,” then
choose one of nbr, no, or num, document which one you chose (it doesn’t really matter which one), and
use only that one.

Avoid long names (< 15 charactersisagood idea). Although the class name

PhysicalOr Virtual ProductOr Service might seem to be agood class name at the time (OK, I'm
stretching it on this example) this nameis simply too long and you should consider renaming it to
something shorter, perhaps something like Offering (NPS, 1996).

Avoid namesthat aresimilar or differ only in case. For example, the variable namesper sistentObj ect
and persistentObjects should not be used together, nor should anSglDatabase and anSQL Database
(NPS, 1996).

Capitalizethefirst letter of standard acronyms. Nameswill often contain standard abbreviations, such
as SQL for Standard Query Language. Names such assglDatabasefor an attribute, or SglDatabasefor a
class, are easier to read than sQL Database and SQL Database

1 use the term “full English descriptor” throughout this document, but what | really mean is“full [insert
your language here] descriptor”, so if the spoken language of your team is French then use full French
descriptors everywhere.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 3

1.4 Good Documentation
We will also be discussing documentation conventions, so let’ s discuss some of the basicsfirst:

1

Comments should add to the clarity of your code. The reason why you document your code isto make
it more understandable to you, your coworkers, and to any other devel oper who comes after you
(Nagler, 1995).

If your program isn’t worth documenting, it probably isn’t worth running (Nagler, 1995). What can |
say, Nagler hit the nail on the head with thisone.

Avoid decoration, i.e. do not use banner -like comments. In the 1960s and 1970s COBOL programmers
got into the habit of drawing boxes, typically with asterisks, around their internal comments (NPS, 1996).
Sure, it gave them an outlet for their artistic urges, but frankly it was a major waste of time that added
little value to the end product. Y ou want to write clean code, not pretty code. Furthermore, because
many of the fonts used to display and print your code are proportional, and many aren’t, you can't line
up your boxes properly anyway.

Keep commentssimple. Some of the best comments | have ever seen are simple, point-form notes. You
do not have to write abook, you just have to provide enough information so that others can
understand your code.

Write the documentation before you writethe code. The best way to document codeisto write the
comments before you write the code. This gives you an opportunity to think about how the code will
work before you write it and will ensure that the documentation gets written. Alternatively, you should
at least document your code asyou writeit. Because documentation makes your code easier to
understand you are abl e to take advantage of thisfact while you are developing it. Theway | look at it,
if you are going to invest the time writing documentation you should at least get something out of it
(Ambler, 19983).

Document why something isbeing done, not just what. Fundamentally, | can always|ook at a piece of
code and figure out what it does. For example, | canlook at the codein Example 1 below and figure out
that a 5% discount is being given on orders of $1,000 dollars or more. Why isthisbeing done? Isthere
abusinessrule that saysthat large orders get adiscount? Isthere alimited-time special on large orders
or isit apermanent program? Wasthe original programmer just being generous? | do not know unless
it is documented somewhere, either in the source code itself or in an external document (Ambler, 1998a).

if (grandTotal >=1000.00)

{

grandTotal = grandTotal * 0.95;
}
Example 1.1

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 4

1.4.1 The Three Types of Java Comments

Java has three styles of comments: Documentation comments start with /** and end with */, C-style
comments which start with /* and end with */, and single-line comments that start with // and go until the
end of the source-codeline. In the chart below isasummary of my suggested use for each type of
comment, aswell as several examples.

Comment Type | Usage Example

Documentation Use documentation comments [**
immediately before declarations of Customer — A customer is any
interfaces, classes, member functions, person or organization that we
and fields to document them. sell services and productsto.
Documentation comments are processed
by javadoc, see below, to create external @author SW. Ambler
documentation for aclass. */

Cdyle Use C-style comments to document out I*
lines of code that are no longer This code was commented out

applicable, but that you want to keep just by JT. Kirk on Dec 9, 1997
in case your users change their minds, or because it was replaced by the

because you want to temporarily turn it preceding code. Deleteit after two
off while debugging. yearsif itisstill not applicable.
... (the source code)
*/

Singleline Use single line commentsinternally /I Apply a5% discount to all invoices
within member functions to document /I over $1000 as defined by the Sarek
business logic, sections of code, and /I generosity campaign started in
declarations of temporary variables. /I Feb. of 1995,

The important thing is that your organization should set a standard as to how C-style comments and single-
line comments are to be used, and then to follow that standard consistently. Use one type to document
business logic and use the other to document out old code. | prefer using single-line comments for
business logic because | can put the documentation on the same line as the code (thisis called endlining
and sometimesinlining). | then use C-style comments for documenting out old code because | can comment
out several lines at once and because C-style looks very similar to documentation comments | rarely use
them so as to avoid confusion.

Tip — Beware Endline Comments

McConnell (1993) argues strongly against the use of endline comments, also known as inline comments or
end of line comments. He points out that the comments have to be aligned to the right of the code so that
they do not interfere with the visual structure of the code. Asaresult they tend to be hard to format, and
that “if you use many of them, it takestime to align them. Such timeis not spent learning more about the
code; it is dedicated solely to the tedious task of pressing the spacebar or the tab key.” He also points out
that endline comments are also hard to maintain because when the code on the line grows it bumps the
endline comment out, and that if you are aligning them you have to do the same for the rest of them. My
advice, however, isto not waste your time aligning endline comments.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

1.4.2 A Quick Overview of javadoc

Included in Sun’s Java Development Kit (JDK) is a program called javadoc that processes Java code files
and produces external documentation, in the form of HTML files, for your Java programs. | think that
javadoc isagreat utility, but at the time of thiswriting it does have itslimitations. First, it supportsalimited
number of tags, reserved words that mark the beginning of a documentation section. The existing tags are a
very good start but | feel are not sufficient for adequately documenting your code. 1’1l expand upon this
statement later. For now, | present a brief overview of the current javadoc tags in the chart below, and will
refer you to the JDK javadoc documentation for further details.

Tag Used for Purpose
@author name Interfaces, Indicates the author(s) of a given piece of code.
Classes, One tag per author should be used.
Interfaces
@deprecated Interfaces, Indicates that the API for the class... has been
Classes, deprecated and therefore should not be used any
Member more.
Functions
@exception name description Member Describes the exceptions that amember function
Functions throws. Y ou should use one tag per exception and
give the full class name for the exception.
@param name description Member Used to describe a parameter passed to a member
Functions function, including its type/class and its usage.
Use one tag per parameter.
@return description Member Describesthe return value, if any, of amember
Functions function. Y ou should indicate the type/class and
the potential use(s) of the return value.
@since Interfaces, Indicates how long theitem has existed, i.e. since
Classes, Member | JDK 1.1
Functions
@see ClassName Classes, Generates a hypertext link in the documentation to
Interfaces, the specified class. Y ou can, and probably should,
Member use afully qualified class name.
Functions, Fields
@see ClassNamet#fmember Classes, Generates a hypertext link in the documentation to
functionName Interfaces, the specified member function. Y ou can, and
Member probably should, use afully qualified class name.
Functions, Fields
@version text Classes, Indicates the version information for agiven piece
Interfaces of code.

The way that you document your code has a huge impact both on your own productivity and on the
productivity of everyone else who later maintains and enhancesit. By documenting your code early in the
development process you become more productive because it forces you to think through your logic before
you commit it to code. Furthermore, when you revisit code that you wrote days or weeks earlier you can
easily determine what you were thinking when you wrote it —it is documented for you already.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 6

1.5 Ambler's Law of Standards

Whenever possible, reuse standards and guidelines, don’t reinvent them. The greater the scope of the
standards and guidelines the more desirable they are, industry standards are more desirable than
organizational standards which in turn are more desirable than project standards. Projects aren’t devel oped
in avacuum and organizations do not operate in avacuum either, therefore the greater the scope of the
standard the greater the chance that somebody elseisalso following it, making it that much easier for you to
work together with them.

Ambler’'sLaw of Standards

Industry standards > or ganizational standards > project sandards >
personal standards > no standards

Blatant Advertising — Purchase The Elements of Java Style today!

Thisbook (Vermeulen et. al., 2000) presents a collection of strategies for
writing superior Java source code. Thisbook presents awider range of
guidelinesthan what is presented herein this paper, and more importantly
presents excellent source code examples. It covers many topics that are not
covered in this paper, such astype safety issues, exception handling,
assertions, and concurrency issues such as synchronization. This paper was
combined with Rogue Wave'sinternal coding standards and then together

Java

el Baraim b Alan Vit

ke Hogua W semlie were evolved to become The Elements of Java Style, so you should find the
book to be an excellent next step in your Javalearning process. Visit
http://www.ambysoft.com/elementslavaStyle.html for more details.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 7

2. Standards For Member Functions

I’m afirm believer in maximizing the productivity of systems professionals. Because | also recognize that an
application spends the majority of its existence being maintained, not developed, | am very interested in
anything that can help to make my code easier to maintain and to enhance, aswell asto develop. Never
forget that the code that you write today may still be in use many years from now and will likely be

mai ntai ned and enhanced by somebody other than you. Y ou must strive to make your code as “clean” and
understandabl e as possible, because these factors make it easier to maintain and to enhance.

In this section we will concentrate on four topics:
- Naming conventions

Visbility

Documentation conventions

Techniques for writing clean Java code

2.1 Naming Member Functions

Member Functions should be named using afull English description, using mixed case with the first | etter of
any non-initial word capitalized. Itisalso common practice for the first word of a member function nameto
be astrong, active verb.

Examples:
openAccount()
printMailingL abel()
save()
delete()

This convention results in member functions whose purpose can often be determined just by looking at its
name. Although this convention resultsin alittle extratyping by the devel oper, because it often resultsin
longer names, this is more than made up for by the increased understandability of your code.

2.1.1 Naming Accessor Member Functions

We will discuss accessors, member functions that get and set the values of fields (fields/properties) in
greater detail in chapter 3. The naming conventions for accessors, however, are summarized below.

2.1.1.1 Getters

Getters are member functions that return the value of afield. Y ou should prefix the word ‘get’ to the name of
thefield, unlessit isaboolean field and then you prefix ‘is’ to the name of the field instead of ‘get.’

Examples:
getFirstName()
getAccountNumber ()
getLostEh()
isPersistent()
isAtEnd()

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 8

By following this naming convention you make it obvious that a member function returns afield of an
object, and for boolean getters you make it obviousthat it returnstrue or false. Another advantage of this
standard isthat it follows the naming conventions used by the beans development kit (BDK) for getter
member functions (DeSoto, 1997). The main disadvantage isthat ‘ get’ is superfluous, requiring extratyping.

2.1.1.1.1 Alternative Naming Convention for Getters — Has and Can

A viable alternative, based on proper English conventions, isto use the prefix ‘has’ or ‘can’ instead of ‘is’
for boolean getters. For example, getter names such ashasDependents() and canPrint() make alot of sense
when you are reading the code. The problem with this approach is that the BDK will not pick up on this
naming strategy (yet). You could rename these member functionsisBurdenedWithDependents() and
isPrintable(). ©

2.1.1.2 Setters

Setters, also known as mutators, are member functions that modify the values of afield. Y ou should prefix
theword ‘set’ to the name of the field, regardless of the field type.

Examples:
setFirstName(String aName)
setAccountNumber (int anAccountNumber)
setReasonableGoals(Vector newGoals)
setPersistent(boolean isPer sistent)
sstAtEnd(boolean isAtEnd)

Following this naming convention you make it obvious that a member function setsthe value of afield of an
object. Another advantage of this standard is that it follows the naming conventions used by the beans
development kit (BDK) for setter member functions (DeSoto, 1997). The main disadvantageisthat ‘set’ is
superfluous, requiring extratyping.

2.1.1.3 Constructors

Constructors are member functions that perform any necessary initialization when an object isfirst created.
Constructors are always given the same name as their class. For example, a constructor for the class
Customer would be Customer (). Note that the same caseis used.

Examples:
Customer ()
SavingsAccount()
PersistenceBroker ()

This naming convention is set by Sun and must be strictly adhered to.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

2.2 Member Function Visibility

For agood design where you minimize the coupling between classes, the general rule of thumb isto be as
restrictive as possible when setting the visibility of amember function. If member function doesn’t have to
be public then make it protected, and if it doesn’t have to be protected then make it private.

Visbility | Description Proper Usage

public A public member function can beinvoked by | When the member function must be
any other member function in any other accessible by objects and classes outside of
object or class. the class hierarchy in which the member

function is defined.

protected A protected member function can be When the member function provides
invoked by any member functionintheclass | behavior that is needed internally within the
inwhich it isdefined or any subclasses of class hierarchy but not externally.
that class.

private A private member function can only be When the member function provides

invoked by other member functionsin the
classinwhich it isdefined, but not in the
subclasses.

behavior that is specific to the class. Private
member functions are often the result of
refactoring, also known as reorganizing, the
behavior of other member functions within
the class to encapsulate one specific
behavior.

No visibility isindicated. Thisis called
default or package visibility, andis
sometimes referred to as friendly visihility.
The member function is effectively public to
al other classes within the same package,
but private to classes external to the
package.

Thisisan interesting feature, but be careful
withitsuse. | useit when I’m building
domain components (Ambler, 1998b),
collections of classesthat implement a
cohesive business concept such as
“Customer”, to restrict access to only the
classes within the component/package.

2.3 Documenting Member Functions
The manner in which you document a member function will often be the deciding factor asto whether or not

it is understandable, and therefore maintainable and extensible.

2.3.1 The Member Function Header

Every Java member function should include some sort of header, called member function documentation, at
the top of the source code that documents all of theinformation that is critical to understanding it. This
information includes, but is not limited to the following:

1. What and why the member function doeswhat it does. By documenting what a member function does
you make it easier for othersto determineif they can reuse your code. Documenting why it does
something makes it easier for othersto put your code into context. Y ou also make it easier for othersto
determine whether or not a new change should actually be made to a piece of code (perhaps the reason
for the new change conflicts with the reason why the code was written in the first place).

2. What amember function must be passed asparameters. You also need to indicate what parameters, if
any, must be passed to a member function and how they will be used. Thisinformation is needed so

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 10

10.

11

that other programmers know what information to pass to amember function. The javadoc @param
tag, discussed in section 1.4.2, isused for this.

What amember function returns. Y ou need to document what, if anything, a member function returns
so that other programmers can use the return value/object appropriately. The javadoc @return tag,
discussed in section 1.4.2, is used for this.

Known bugs. Any outstanding problems with amember function should be documented so that other
devel opers understand the weaknesses/difficulties with the member function. If agivenbugis
applicable to more than one member function within a class, then it should be documented for the class
instead.

Any exceptionsthat a member function throws. Y ou should document any and all exceptionsthat a
member function throws so that other programmers know what their code will need to catch. The
javadoc @exception tag, discussed in section 1.4.2, is used for this.

Visibility decisions. If you feel that your choice of visibility for amember function will be questioned
by other developers, perhaps you’ ve made a member function public even though no other objects
invoke the member function yet, then you should document your decision. Thiswill help to make your
thinking clear to other devel opers so that they do not waste time worrying about why you did
something questionable.

How a member function changesthe object. 1f amember function changes an object, for example the
withdraw() member function of abank account modifies the account balance then this needs to be
indicated. Thisinformation is needed so that other Java programmers know exactly how a member
function invocation will affect the target object.

Include a history of any code changes. Whenever a change is made to amember function you should
document when the change was made, who made it, why it was made, who requested the change, who
tested the change, and when it was tested and approved to be put into production. This history
information is critical for the future mai ntenance programmers who are responsible for modifying and
enhancing the code. Note: Thisinformation really belongsin your software configuration
management/version control system, not the source codeitself! If you aren’t using these sorts of tools
(and you really should) then put this information into your code.

Examples of how to invokethe member function if appropriate. One of the easiest waysto determine
how apiece of code worksit to look at an example. Consider including an example or two of how to
invoke amember function.

Applicable preconditions and postconditions. A precondition is a constraint under which a member
function will function properly, and a postcondition is a property or assertion that will be true after a
member function isfinished running (Meyer, 1988). |n many ways preconditions and postconditions
describe the assumptions that you have made when writing a member function (Ambler, 1998a),
defining exactly the boundaries of how a member function is used.

All concurrency issues. Concurrency isanew and complex concept for many developers and at best it
isan old and complex topic for experienced concurrent programmers. The end result isthat if you use
the concurrent programming features of Javathen you need to document it thoroughly. Lea(1997)
suggests that when a class includes both synchronized and unsynchronized member functions you
must document the execution context that a member function relies on, especially when it requires
unrestricted access so that other devel opers can use your member functions safely. When a setter, a
member function that updates afield, of aclass that implementsthe Runnableinterfaceis not
synchronized then you should document your reason(s) why. Finaly, if you override or overload a
member function and change its synchronization you should also document why.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 11

The important thing is that you should document something only when it adds to the clarity of your code.
Y ou wouldn’'t document all of the factors described above for each and every member function because not
all factors are applicable to every member function. Y ou would however document several of them for each
member function that you write. In chapter 9, | propose several new documentation tags for javadoc to
support the factors listed above.

2.3.2 Internal Documentation

In addition to the member function documentation, you also need to include comments within your member
functionsto describe your work. The goal isto make your member function easier to understand, to
maintain, and to enhance.

There are two types of comments that you should use to document the internals of your code: C-style
comments (/* ... */) andsingle-line comments (//). Asdiscussed in section 1.4.1, you should seriously
consider choosing one style of comments for documenting the business logic of your code and one for
commenting out unneeded code. My suggestion isto use single-line comments for your business logic,
because you can use this style of comments both for full comment lines and for endline comments that
follow at the end of aline of code. | use C-style comments to document out lines of unneeded code because
| can easily take out several lines with only one comment. Furthermore, because C-style comments ook so
much like documentation comments | feel that their use can be confusing, taking away from the
understandability of my code. Therefore| use them sparingly.

Internally, you should always document:

1. Control structures. Describe what each control structure does, such as comparison statements and
loops. You shouldn’t haveto read all the codein acontrol structure to determine what it does, instead
you should just haveto look at aone or two line comment immediately preceding it.

2. Why, aswell aswhat, the code does. Y ou can always|ook at a piece of code and figure out what it
does, but for code that isn’t obvious you can rarely determine why it is done that way. For example,
you can look at aline of code and easily determine that a 5% discount is being applied to the total of an
order. Thatiseasy. What isn't easy isfiguring out WHY that discount is being applied. Obviously
there is some sort of business rule that says to apply the discount, so that business rule should at |east
bereferred to in your code so that other devel opers can understand why your code does what it does.

3. Local variables. Although we will discussthisin greater detail in chapter 4, each local variable defined
in amember function should be declared on its own line of code and should usually have an endline
comment describing its use.

4. Difficult or complex code. If you find that you either can’t rewriteit, or do not have the time, then you
must document thoroughly any complex code in amember function. My general rule of thumb isthat if
your codeisn’t obvious, then you need to document it.

5. Theprocessing order. If there are statementsin your code that must be executed in adefined order
then you should ensure that this fact gets documented (Ambler, 1998a). There's nothing worse than
making a simple modification to a piece of code only to find that it no longer works, then spending
hours looking for the problem only to find that you’ ve gotten things out of order.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 12

Tip —Document Your Closing Braces

Every so often you will find that you have control structures within control structures within control
structures. Although you should avoid writing code like this, sometimes you find that it is better to write it
thisway. The problem isthat it becomes confusing which ending brace, the } character, belongs to which
control structure. The good news isthat some code editors support afeature that when you select a open
braceit will automatically highlight the corresponding closing one, the bad newsis that not every editor
supportsthis. | have found that by marking the ending braces with an endline comment such as//end if,
/lend for, /lend switch, ... makes my code easier to understand.

Given the choice, however, | would rather use a more sophisticated editor.

Blatant Advertising — Purchase The Object Primer, 2™ Edition (late Spring of 2000)!

SIS The Object Primer is a straightforward, easy to understand introduction to

| The Object Primer object-oriented concepts, requirements, analysis, and design techniques

applying the techniques of the Unified Modeling Language (UML). The

Object Primer goes further to show you how to move from object modeling to
object-oriented programming, providing Java examples, and describes the
techniques of the Full Lifecycle Object-Oriented Testing (FLOOT)
methodol ogy to enable you to test all of your development artifacts. It also
puts this material in the context of the leading software processes, including
the enhanced lifecycle for the Unified Process, the process patterns of the
Object-Oriented Software Process (OOSP), and the best practices Extreme
Programming (XP). Visit http://www.ambysoft.com/theObjectPrimer.html for
more details.

2.4 Techniques for Writing Clean Code

In this section we will cover several techniques that help to separate the professional developersfrom the
hack coders. Thesetechniques are:

Document your code

Paragraph your code

Paragraph and punctuate multi-line statements

Use whitespace

Follow the thirty-second rule

Specify the order of message sends

Write short, single command lines

2.4.1 Document Your Code

Remember, if your code isn’t worth documenting then it isn’t worth keeping (Nagler, 1995). When you
apply the documentation standards and guidelines proposed in this paper appropriately you can greatly
enhance the quality of your code.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 13

2.4.2 Paragraph/Indent Your Code

One way to improve the readability of amember functionisto paragraph it, or in other wordsindent your
code within the scope of a code block. Any code within braces, the { and } characters, formsablock. The
basic ideais that the code within ablock should be uniformly indented one unit>. To ensure consistency,
start your member function and class declarationsin column 1 (NPS, 1996).

The Java convention appears to be that the open brace is to be put on the line following the owner of the
block and that the closing brace should be indented one level. The important thing as pointed out by Laffra
(1997) isthat your organization chooses an indentation style and sticksto it. My adviceisto use the same
indentation style that your Java development environment uses for the code that it generates.

2.4.3 Paragraph and Punctuate Multi-Line Statements

A related issue to paragraphing your code occurs when a single statement requires several lines of code, an
example of which appears below.

Example:
BankA ccount newPersonal Account = AccountFactory
createBankA ccountFor(currentCustomer, startDate,
initial Deposit, branch);

Notice how | indent the second and third lines one unit, visibly indicating that they are still a part of the
preceding line. Also notice how the final commain the second line immediately follows the parameter and is
not shown on the following line (word processors work this way too).

2 There seems to be a debate raging about what a unit is, but the only unit that makes senseto meisa
horizontal tab. It requirestheleast amount of typing, one entire keystroke, while at the same time providing
enough of an indent to be noticeable. | have always found that using spacesis problematic, some people
use two, some three, some four, and so on. Tabs are much easier. | have been informed that some editors
convert tabs to spaces (yuck!) and that others do not support tabs at all. My only responseistoinvestina
decent code editor.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 14

2.4.4 Use Whitespace in Your Code

A few blank lines or spaces, called whitespace, added to your Java code can hel p to make it much more
readable by breaking it up into small, easy-to-digest sections (NPS, 1996; Ambler, 1998a). The Vision 2000
team (1996) suggests using a single blank line to separate logical groups of code, such as control structures,
with two blank lines to separate member function definitions. Without whitespace it isvery difficult to read
and to understand. In the code below notice how the readability second version of the code isimproved by
the addition of ablank line between setting the counter and the lines of code to calculate the grand total.
Also notice how the addition of spaces around the operators and after the comma al so increase the
readability of the code. Small things, yes, but it can still make a big difference.

Code examples:

counter=1;

grandT otal=invoice.total ()+getAmount Due();
grandT otal=Discounter .discount(grandT otal this);
counter = 1;

grandTotal = invoicetotal () + ggtAmountDue();
grandT otal = Discounter.discount(grandT otal, this);

2.4.5 Follow The Thirty-Second Rule

| have always believed that another programmer should be able to look at your member function and be able
to fully understand what it does, why it doesit, and how it doesit in less than 30 seconds. If he or she can’t
then your codeistoo difficult to maintain and should beimproved. Thirty seconds, that’'sit. A good rule of
thumb suggested by Stephan Marceau isthat if amember function is more than ascreen then it is probably
too long.

2.4.6 Write Short, Single Command Lines

Y our code should do one thing per line (Vision, 1996; Ambler, 1998a). Back in the days of punch cardsit
made sense to try to get as much functionality as possible on asingle line of code, but considering it has
been over fifteen years since | have even seen apunch card | think we can safely rethink this approach to
writing code. Whenever you attempt to do more than one thing on asingle line of code you make it harder
to understand. Why do this? We want to make our code easier to understand so that it is easier to maintain
and enhance. Just like amember function should do one thing and one thing only, you should only do one
thing on asingleline of code. Furthermore, you should write code that remains visible on the screen
(Vision, 1996). My general rule of thumb is that you shouldn’t have to scroll your editing window to the
right to read the entire line of code, including code that uses endline comments.

2.4.7 Specify the Order of Operations

A really easy way to improve the understandability of your code isto use parenthesis, also called “round
brackets,” to specify the exact order of operationsin your Java code (Nagler, 1995; Ambler, 1998a). If | have
to know the order of operations for alanguage to understand your source code then something is seriously
wrong. Thisismostly anissuefor logical comparisons where you AND and OR several other comparisons
together. Note that if you use short, single command lines as suggested above then thisreally shouldn’t
Crop up asan issue.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 15

2.5 JavaCoding Tips

This section contains a collection of guidelinesthat | have found useful over the yearsto increase the
quality of my source code.

2.5.1 Organize Your Code Sensibly

Compare the two code examples presented below. The one of theright is easier to understand because the
statements involving anObject have been placed together. The code still does the samething, it’sjust a
little easier to read now (note that if aCounter had been passed as a parameter in message3() then this
change couldn’t have been made).

Code Examples.
anObject.messagel(); anObject.messagel();
anObject.message2(); anObject.message2();
aCounter = 1; anObj ect.message3();

anObject.message3();

aCounter =1,

2.5.2 Place Constants on the Left Side of Comparisons

Consider the code examples below. Although they are both equivalent, at least on first inspection, the code
on the left compiles and the code on the right does not. Why? Because the second if statement isn’t doing
acomparison, it’s doing assignment — you can’t assign a new value to aconstant value such as0. Thiscan
be adifficult bug to find in your code (at | east without a sophisticated testing tool). By placing constants
on the | eft side of comparisons you achieve the same effect and the compiler will catch it if you accidentally
use assignment instead of comparison.

Code Examples.
if (something==1){...} if (1==something){...}
if (x=0){...} if (0=x){...}

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 16

3. Standards for Fields (Attributes/Properties)

Throughout thiswhite paper | will use the term field to refer to a attribute, which the Beans Devel opment Kit
(BDK) callsaproperty (DeSoto, 1997). A fieldisapiece of datathat describes an object or class. Fields
may be abase datatype like astring or afloat, or may be an object such as a customer or bank account.

3.1 Naming Fields

3.1.1 Use a Full English Descriptor for Field Names

Y ou should use afull English descriptor to name your fields (Gosling, Joy, Steele, 1996; Ambler 1997) to
make it obvious what the field represents. Fieldsthat are collections, such as arrays or vectors, should be
given names that are plural to indicate that they represent multiple values.

Examples:
firstName
zipCode
unitPrice
discountRate
orderltems
sglDatabase

If the name of the field begins with an acronym, such assqlDatabase, then the acronym (in this case ‘sqgl’)
should be completely in lowercase. Do not use sQL Databasefor the name.

3.1.1.1 Alternative — Hungarian Notation

The “Hungarian Notation” (McConnell, 1993) is based on the principle that afield should be named using
the following approach: xEeeeeeEeeeee where x indicates the component type and EeeecEeeeece isthe full
English descriptor.

Examples:
sFirstName
iZipCode
IUnitPrice
IDiscountRate
cOrderltems

The main advantage is that thisis an industry standard common for C++ code so many people already
follow it. Furthermore, developers can quickly judge from the name of the variable itstype and how it is
used. The main disadvantages are that the prefix notation becomes cumbersome when you have alot of the
same type of attribute, you break from the full English descriptor naming convention, and your accessor
method naming strategy is impacted (see Section 3.4.1).

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 17

3.1.1.2 Alternative — Leading or Trailing Underscores

A common approach, coming from the C++ community, isto include either aleading or trailing underscore to
thefield name.

Examples:
_firstName
firstName_

The advantage of this approach is that you immediately know that you are dealing with afield, avoiding the
name hiding issue with parameters and locals (although, once again, name hiding in this caseisn’t an issue
if you use accessor methods). The main disadvantage isthat thisis not the standard set by Sun.

3.1.2 Naming Components (Widgets)

For names of components (interface widgets) you should use afull English descriptor postfixed by the
widget type®. Thismakesit easy for you to identify the purpose of the component aswell asitstype,
making it easier to find each component in alist (many visual programming environments provide lists of all
components in an applet or application and it can be confusing when everything is named buttonl, button2,

).

Examples:
okButton
customerList
fileMenu
newFileM enultem

3.1.2.1 Alternative for Naming Components — Hungarian Notation

Examples:
pbOk
IbCustomer
mFile
miNewFile

The advantages are the same as described above in Section 3.1.1.1. The main disadvantageisthat the prefix
notation becomes cumbersome when you have alot of the same type of widget.

3.1.2.2 Alternative for Naming Components — Postfix-Hungarian Notation

Basically a combination of the other two alternatives, it results in names such asokPb, customerL Db, fileM,
and newFileMi. The main advantage isthat the name of the component indicates the widget type and that
widgets of the same type aren’t grouped together in an alphabetical list. The main disadvantage isthat you
still aren’t using afull English description, making the standard harder to remember because it deviates from
the norm.

% Thisis my own standard and not one promoted by Sun.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 18

Tip — Set Component Name Standards

Whatever convention you choose, you'll want to create alist of “official” widget names. For example, when
naming buttons do you use Button or PushButton, b or pb? Create alist and makeit available to every Java
developer in your organization.

3.1.3 Naming Constants

In Java, constants, values that do not change, are typically implemented asstatic final fields of classes.
The recognized convention isto use full English words, all in uppercase, with underscores between the
words (Godling, Joy, Steele, 1996; Sandvik, 1996; NPS, 1996).

Examples:
MINIMUM_BALANCE
MAX_VALUE
DEFAULT_START_DATE

The main advantage of this convention is that it helpsto distinguish constants from variables. Wewill see
later in the document that you can greatly increase the flexibility and maintainability of your code by not
defining constants, instead you should define getter member functions that return the value of constants.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 19

3.1.4 Naming Collections

A collection, such asan array or avector, should be given a pluralized name representing the types of
objects stored by the array. The name should be afull English descriptor with thefirst letter of al non-initial
words capitalized.

Examples:
customers
orderltems
aliases

The main advantage of this convention isthat it helpsto distinguish fields that represent multiple values
(collections) from those that represent single values (non-collections).

3.1.4.1 Alternative for Naming Collections — The ‘Some’ Approach
A non-standard approach, although an interesting one, isto prefix the name of a collection with ‘some’.

Examples:
someCustomer s
someOrderltems
someAliases

3.1.5 Do Not “Hide” Names

Name hiding refersto the practice of naming alocal variable, argument, or field the same (or similar) asthat
of another one of greater scope. For example, if you have afield calledfirstName do not create alocal
variable or parameter called fir stName, or anything closeto it like firstNames or fistName (hey, maybe some
people nametheir fists, personally | refer to mine as“left” and “right” <grin>). Try to avoid thisasit makes
your code difficult to understand and prone to bugs because other devel opers, or you, will misread your
code while they are modifying it and make difficult to detect errors.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

3.2 Field Visibility

The Vision team (1996) suggests that fields not be declared public for reasons of encapsulation, but | would
go further to state that all fields should be declared private. When fields are declared protected there isthe
possibility of member functionsin subclassesto directly access them, effectively increasing the coupling
within aclass hierarchy. This makes your classes more difficult to maintain and to enhance, thereforeit
should be avoided. Fields should never be accessed directly, instead accessor member functions (see
below) should be used.

Visibility

Description

Proper Usage

public

A public field can be accessed by any other
member function in any other object or
class.

Do not makefields public.

protected

A protected field can be accessed by any
member function in the classinwhichitis
declared or by any member functions
defined in subclasses of that class.

Do not make fields protected.

private

A private field can only be accessed by
member functionsintheclassinwhichitis
declared, but not in the subclasses.

All fields should be private and be accessed
by getter and setter member functions
(accessors).

For fields that are not persistent (they will not be saved to permanent storage) you should mark them as
either static or transient (DeSoto, 1997). This makes them conform to the conventions of the BDK.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 21

3.3 Documenting a Field

Every field should be documented well enough so that other developers can understand it. To be effective,
you need to document:

1. Itsdescription. You need to describe afield so that people know how to useit.

2. Document all applicableinvariants. Invariants of afield are the conditions that are always true about it.
For example, an invariant about the field dayOfM onth might be that its value is between 1 and 31
(obviously you could get far more complex with thisinvariant, restricting the value of the field based on
the month and the year). By documenting the restrictions on the value of afield you help to define
important business rules, making it easier to understand how your code works (or at least should work).

3. Examples. For fields that have complex business rules associated with them you should provide
several example values so asto make them easier to understand. An exampleisoftenlikeapicture: itis
worth athousand words.

4. Concurrency issues. Concurrency isanew and complex concept for many developers, actually, at
best it isan old and complex topic for experienced concurrent programmers. The end result isthat if
you use the concurrent programming features of Javathen you need to document it thoroughly.

5. Visibility decisions. If you' ve declared afield to be anything but private then you should document
why you have done so. Field visibility is discussed in section 3.2 above, and the use of accessor
member functions to support encapsulation is covered in section 3.4 below. The bottom lineisthat you
better have areally good reason for not declaring avariable as private.

3.4 The Use of Accessor Member Functions

In addition to naming conventions, the maintainability of fieldsis achieved by the appropriate use of
accessor member functions, member functions that provide the functionality to either update afield or to
accessitsvalue. Accessor member functions comein two flavors: setters (also called mutators) and
getters. A setter modifies the value of avariable, whereas a getter obtainsit for you.

Although accessor member functions used to add overhead to your code, Java compilers are now optimized
for their use, thisisno longer true. Accessors help to hide the implementation details of your class. By
having at most two control points from which avariableis accessed, one setter and one getter, you are able
to increase the maintainability of your classes by minimizing the points at which changes need to be made.
Optimization of Javacode isdiscussed in section 7.3.

One of the most important standards that your organization can enforce is the use of accessors. Some
devel opers do not want to use accessor member functions because they do not want to type the few extra
keystrokes required (for example, for agetter you need to typein ‘get’ and ‘ ()’ above and beyond the name
of thefield). The bottom lineisthat the increased maintainability and extensibility from using accessors
more than justifiestheir use.

Tip — Accessors Are The Only Place To Access Fields

A key concept with the appropriate use of accessor member functionsisthat the ONLY member functions
that are allowed to directly work with afield are the accessor member functions themselves. Yes, itis
possible for directly access a private field within the member functions of the classin which thefield is
defined but you do not want to do so because you would increase the coupling within your class.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

3.4.1 Naming Accessors

Getter member functions should be given the name ‘get’ + field name, unless the field represents a boolean
(true or false) and then the getter is given the name ‘is’ + field name. Setter member functions should be
given the name ‘set’ + field name, regardless of the field type (Godling, Joy & Steele, 1996; DeSoto, 1997).
Note that the field name is alwaysin mixed case with thefirst | etter of all words capitalized. Thisnaming
convention is used consistently within the JDK and iswhat is required for beans devel opment.

Examples:

Field Type Getter name Setter name
firstName string getFirstName() setFirstName()
address SurfaceAddress object getAddress() setAddress()
persistent boolean isPersistent() setPersistent()
customerNumber | int getCustomer Number () setCustomer Number ()
orderltems Array of Orderltem getOrderltems() setOrderltems()

objects

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 23

3.4.2 Advanced Techniques for Accessors

Accessors can be used for more than just getting and setting the values of instance fields. In thissection
we will discuss how to increase the flexibility of your code by using accessors to:

Initialize the values of fields

Access constant values

Access collections

Access several fields simultaneously

3.4.2.1 Lazy Initialization

Variables need to beinitialized before they are accessed. There are two lines of thought to initialization:
Initialize all variables at the time the object is created (the traditional approach) or initialize at the time of first
use. Thefirst approach uses special member functionsthat are invoked when the object isfirst created,
called constructors. Although thisworks, it often provesto be error prone. When adding a new variable
you can easily forget to update the constructor(s). An alternative approach is called lazy initialization
wherefields areinitialized by their getter member functions, as shown below”. Notice the member function
checksto seeif the branch number is zero, if itis, thenit setsit to the appropriate default value.

/**
Answer sthe branch number, which isthe leftmost
four digits of the full account number.
Account numbersarein theformat BBBBAAAAAA.
*/
protected int getBranchNumber ()
{
if(branchNumber == 0)
{
/I Thedefault branch number is 1000, which
/I isthe main branch in downtown Bedrock.
setBranchNumber (1000);
}

return branchNumber;

}

It is quite common to use lazy initialization for fieldsthat are actually other objects stored in the database.
For example, when you create anew inventory item you do not need to fetch whatever inventory item type
from the database that you' ve set as adefault. Instead, use lazy initialization to set thisvalue thefirst timeit
isaccessed so that you only have to read the inventory item type object from the database when and if you
need it. Thisapproach isadvantageous for objectsthat have fields that aren’t regularly accessed — Why
incur the overhead of retrieving something from persistent storageif you aren’t going to useit?

Whenever lazy initialization is used in a getter member function you should document why the default value
iswhat it is, as we saw in the exampl e above. When you do this you take the mystery out of how fields are
used in your code, improving both its maintainability and extensibility.

* Note how a setter member function is used within the getter member function.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 24

3.4.2.2 Getters for Constants

The common Java wisdom, perhaps wisdom is the wrong term, is to implement constant values as static final
fields. Thisapproach makes sense for “constants’ that are guaranteed to be stable. For examplethe class
Boolean implements two static final fields called TRUE and FAL SEwhich represents the two instances of
that class. It would also make sensefor aDAYS IN_A WEEK constant whose value probably is never
going to change®.

However, many so-called business “ constants’ change over time because the business rule changes.
Consider the following example: The Archon Bank of Cardassia (ABC) has alwaysinsisted that an account
has a minimum balance of $500 if it isto earn interest. To implement this, we could add a static field named
MINIMUM_BALANCE to the class Account that would be used in the member functions that calculate
interest. Although thiswould work, it isn’'t flexible. What happensif the business rules change and
different kinds of accounts have different minimum balances, perhaps $500 for savings accounts but only
$200 for checking accounts? What would happen if the business rule were to change to a $500 minimum
balance in thefirst year, $400 in the second, $300 in the third, and so on? Perhaps the rule will be changed
to $500 in the summer but only $250 in the winter?® Perhaps a combination of all of these ruleswill need to
be implemented in the future.

The point to be made is that implementing constants as fieldsisn't flexible, amuch better solutionisto
implement constants as getter member functions. In our example above, a static (class) member function
caled getMinimumBalance() is far more flexible than a static field called MINIMUM _BAL ANCE because we
can implement the various business rulesin this member function and subclassit appropriately for various
kinds of accounts.

/**
Get the value of the account number. Account numbersarein thefollowing
format: BBBBAAAAAA, where BBBB isthe branch number and
AAAAAA isthebranch account number.
*/
public long getAccountNumber ()
{
return ((getBranchNumber () * 100000) + getBranchAccountNumber ());
}
/**
Set the account number. Account numbersarein the following
format: BBBBAAAAAA where BBBB isthe branch number and
AAAAAA isthebranch account number.
*/
public void setAccountNumber (int newNumber)
{

setBranchAccountNumber (newNumber % 1000000);
setBranchNumber (newNumber / 1000000);

}

®|’m assuming that all cultures have a 7-day week, something that | do not know for sure. | have been
involved with the development of enough international applicationsto know that | really need to verify this
assumption. Youreally learn alot on projectsinvolving localization issues, | highly suggest getting on one.
® Hey, I'm Canadian. This could happen.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 25

Another advantage of constant gettersisthat they help to increase consistency of your code. Consider the
code shown above — it doesn’t work properly. An account number is the concatenation of the branch
number and the branch account number. Testing our code, we find that the setter member function,
setAccountNumber () doesn’t update branch account numbers properly. That isbecauseit used 100,000
instead of 1,000,000 to extract the field branchAccountNumber. Had we used a single source for thisvalue,
the constant getter getAccountNumber Divisor () as we see in below, our code would have been more
consistent and would have worked.

/**
Returnsthedivisor needed to separate the branch account number from the
branch number within the full account number.
Full account numbersarein theformat BBBBAAAAAA.
*/
publiclong getAccountNumber Divisor ()
{
return ((long) 1000000);
}
/**
Get the value of the account number. Account numbersarein thefollowing
format: BBBBAAAAAA, where BBBB isthe branch number and
AAAAAA isthebranch account number.
*/
public long getAccountNumber ()
{
return ((getBranchNumber () * getAccountNumber Divisor ()) +
getBranchAccountNumber ());
}
/**
Set the account number. Account numbersarein thefollowing
format: BBBBAAAAAA where BBBB isthe branch number and
AAAAAA isthebranch account number.
*/
public void setAccountNumber (int newNumber)
{

setBranchAccountNumber (newNumber % getAccountNumber Divisor ());
setBranchNumber (newNumber / getAccountNumber Divisor ());

}

By using accessors for constants we decrease the chance of bugs and at the same time increase the
maintainability of our system. When the layout of an account number changes, and we know that it
eventually will (users are like that), chances are that our code will be easier to change because we' ve both
hidden and centralized the information needed to build/break up account numbers.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 26

3.4.2.3 Accessors for Collections

The main purpose of accessorsisto encapsulate the access to fields so as to reduce the coupling within
your code. Collections, such as arrays and vectors, being more complex than single value fields naturally
need to have more than just the standard getter and setter member function implemented for them. In
particular, because you can add and remove to and from collections, accessor member functions need to be
included to do so. The approach that | use isto add the following accessor member functions where
appropriate for afield that is a collection:

Member Function type Naming convention Example

Getter for the collection getCollection()’ getOrderltems()
Setter for the collection setCollection() setOrderltems()
Insert an object into the collection insertObject() insertOrderltem()
Delete an object from the collection deleteObject() deleteOrderItem()
Create and add a new object into the newODbject() newOrdertem()
collection

The advantage of this approach isthat the collection isfully encapsulated, allowing you to later replace it
with another structure, perhaps alinked list or a B-tree.

3.4.2.4 Accessing Several Fields Simultaneously

One of the strengths of accessor member functionsisthat they enable you to enforce business rules
effectively. Consider for example aclass hierarchy of shapes. Each subclass of Shape knows its position
viathe use of two fields—xPosition and yPosition —and can be moved on the screen on a two-dimensional
plane viainvoking the member function move(Float XM ovement, Float yM ovement). For our purposesit
doesn’t make sense to move a shape along one axis at atime, instead we will move along both the x and the
y axis simultaneously (it is acceptable to pass avalue of 0.0 asfor either parameter of the move() member
function). Theimplication isthat the move() member function should be public, but the member functions
setX Position() and setY Position() should both be private, being invoked by the move() member function

appropriately.

An alternative implementation would be to introduce a setter member function that updates both fields at
once, as shown below. The member functionssetXPosition() and setY Position() would still be private so
that they may not be invoked directly by external classes or subclasses (you would want to add some
documentation, shown below, indicating that they should not be directly invoked).

" Remember, the naming convention for collections isto use a pluralized version of the type of information
that it contains. Therefore a collection of order item objects would be called orderItems.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 27

/**
Set the position of the shape
*/
protected void setPosition(Float x, Float y)
{
setXPosition(x);
setY Position(y);
}
/**
Set the x position —Important: I nvoke setPosition(), not thismember function.
*/
privatevoid setXPosition(Float x)
{
xPosition = x;
}
/**
Set they position of the shape
Important: Invoke setPosition(), not this member function.
*/
privatevoid setY Position(Float y)
{
yPosition = y;
}

Important note to all of the nitpickers out there: Yes, | could have implemented this with a single instance
of Paint, but | did it thisway for an easy example.

3.4.3 Visibility of Accessors

Always strive to make them protected, so that only subclasses can access the fields. Only when an ‘ outside
class’ needsto access afield should you make the corresponding getter or setter public. Notethatitis
common that the getter member function be public and the setter protected.

Sometimes you need to make setters private to ensure certain invariants hold. For example, an Order class
may have afield representing a collection of OrderItem instances, and a second field called order Total
which isthetotal of the entire order. The orderTotal isaconveniencefield that isthe sum of all sub-totals
of the ordered items. The only member functions that should update the value of order Total are those that
mani pul ate the collection of order items. Assuming that those member functions are all implementedin
Order, you should make setOrder Total() private, even though getOrder Total() is more than likely public.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 28

3.4.4 Why Use Accessors?

| think that Kanerva (1997) saysit best: “ Good program design seeks to isolate parts of a program from
unnecessary, unintended, or otherwise unwanted outside influences. Access modifiers (accessors) provide
an explicit and checkable means for the language to control such contacts.” Accessor member functions
improve the maintainability of your classesin the following ways:

1. Updatingfidds. You have single points of update for each field, making it easier to modify and to test.

In other words your fields are encapsul ated.
Obtaining the values of fields. Y ou have complete control over how fields are accessed and by whom.

Obtaining the values of constants and the names of classes. By encapsulating the value of constants
and of class namesin getter member functions when those values/names change you only need to
update the value in the getter and not every line of code where the constant/name is used.

Initializing fields. The use of lazy initialization ensuresthat fields are always initialized and that they
areinitialized only if they are needed.

Reduction of the coupling between a subclass and its superclass(es). When subclasses access
inherited fields only through their corresponding accessor member functions, it makesit possibleto
change the implementation of fieldsin the superclass without affecting any of its subclasses,
effectively reducing coupling between them. Accessors reduce therisk of the “fragile base class
problem” where changes in a superclass ripple throughout its subclasses.

Encapsulating changestofields. If the business rules pertaining to one or more fields change you can
potentially modify your accessors to provide the same ability as before the change, making it easier for
you to respond to the new businessrules.

Simplification of concurrency issues. Lea (1997) points out that setter member functionsprovide a
single place to include a notifyAll if you have waits based on the value of that field. This makes moving
to a concurrent solution much easier.

Name hiding becomesless of an issue. Although you should avoid name hiding, giving local variables
the same names as fields, the use of accessors to always access fields means that you can give local
variables any name you want — Y ou do not have to worry about hiding field names because you never
access them directly anyway.

3.4.5 Why Shouldn’'t You Use Accessors?

The only time that you might want to not use accessors is when execution timeis of the utmost importance,
however, it isavery rare case indeed that the increased coupling within your application justifies this
action. Lea (1996) makes a case for minimizing the use of accessors on the groundsthat it is often the case
that the values of fieldsin combination must be consistent, and that it isn’t wise to provide accessto fields
singly. He'sright, so do not! | think that L ea has missed the point that you do not need to make all
accessor member functions public. When you are in the situation that the values of some fields depend
upon one another then you should introduce member functions that do the “right thing” and make the
appropriate accessor member functions either protected or private as needed. Y ou do not have to make all
of your accessors public.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 29

3.5 Always Initialize Static Fields

Doug Lea (1996) validly points out that you must ensure that static fields, also known as classfields, be
given valid values because you can’t assume that instances of aclasswill be created before astatic field is
accessed. Leasuggeststhe use of static initializers (Grand, 1997), static blocks of code which are
automatically run when aclassisloaded. Notethat thisisaproblem only if you choose not to use accessor
member functions for static fields— With accessor member functions you can always use lazy initialization
to guarantee that the value of afield isset. The use of accessor member functionsto encapsulate fields
gives you complete control over how they are used, while reducing coupling within your code. A win-win
situation.

Blatant Advertising — Purchase More Process Patterns today!

This book presents a collection of process patterns for successfully

delivering a software project and then operating and supporting it once

itisin production. It provides awealth of advice for testing your

object-oriented application, for reworking it, for preparing to transition it

to your user community, and for supporting it onceit isin production.

ﬁ““‘? Lorge Seale Syiters It puts these topicsin the context of a proven software process for the
p Dbject Technolegy .. L. . .

SCOTT W, AMELLE development of large-scale, mission-critical software, covering topics

| that you typically don’t find in other books about object-oriented

s development such as project management, quality assurance, risk

- management, and deliverables management. Object-oriented

development is hard, particularly if you are building systems using n-

tier technology such as Enterprise JavaBeans (EJB) or even the

“simple” Javaplatform, and you need to understand the big picture to

be successful. More Process Patterns and its sister book, Process

Patterns give you that big picture. For more information, and to order

online, visit http://www.ambysoft.com/moreProcessPatterns.html

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 30

4. Standards for Local Variables

A local variableis an object or dataitem that is defined within the scope of ablock, often a member function.
The scope of alocal variableisthe block in whichiit is defined. Theimportant coding standards for local
variablesfocus on:

Naming conventions

Documentation conventions

Declarations

4.1 Naming Local Variables

In general, local variables are named following the same conventions as used for fields, in other words use
full English descriptors with the first letter of any non-initial word in uppercase.

For the sake of convenience, however, this naming convention isrelaxed for several specific types of local
variable:

Streams

Loop counters

Exceptions

4.1.1 Naming Streams

When thereisasingle input and/or output stream being opened, used, and then closed within a member
function the common convention isto use in and out for the names of these streams, respectively (Gosling,
Joy, Steele, 1996). For astream used for both input and output, the implication is to use the nameinOut.

A common alternative to this naming convention is to use the namesinputStream, outputStream, and
ioStream instead of in, out, and inOut respectively. Totell youthetruth | likethis alternative better, but the
fact remains that the namesin and out are what Sun suggests, so that’ s what you should probably stick
with.

4.1.2 Naming Loop Counters

Because |oop counters are avery common use for local variables, and because it was acceptable in C/C++,
in Java programming the use of i, j, or k, is acceptable for loop counters (Gosling, Joy, Steele, 1996;
Sandvik, 1996). If you use these names for loop counters, use them consistently.

A common alternative isto use names like loopCounter or simply counter, but the problem with this
approach isthat you often find names like counter 1 and counter 2 in member functions that require more
than one counter. The bottom lineisthati, j, k work as counters, they’re quick to typein, and they're
generally accepted.

A major disadvantage of using single |etter names for counters, or for anything, isthat when you try to
search for its use within a code file you will obtain many false hits — consider the ease of searching for
loopCounter over the letter i.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 31

4.1.3 Naming Exception Objects

Because exception handling is also very common in Java coding the use of the letter e for ageneric
exception is considered acceptable (Gosling, Joy, Steele, 1996; Sandvik, 1996).

4.1.4 Bad Ideas for Naming Local Variables

Unfortunately afew “common” short names have been approved for local variables, but frankly I think
they're inappropriate. In the chart below | have summarized the naming conventions put forth by Sun for
other types of common objects/variables used in Java (Gosling, Joy, Steele, 1996). I'm sorry, but it ismy
opinion that these conventions have crossed the hacking line and actually reduce the readability of your
source code. Use these conventionsif you want to, but I do not recommend them.

Variable Type Suggested Naming Convention
offset off
length len
byte b
char c
double d
float f
long I
Object 0
String S
Arbitrary value v

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 32

4.2 Declaring and Documenting Local Variables

There are several conventions regarding the declaration and documentation of local variablein Java. These
conventions are:

1

Declareonelocal variable per line of code. Thisis consistent with one statement per line of code and
makes it possible to document each variable with an endline comment (Vision, 2000).

Document local variableswith an endline comment. Endline commenting isastyleinwhich asingle
line comment, denoted by //, immediately follows a command on the same line of code (thisis called an
endline comment). Y ou should document what alocal variable is used for and where appropriate why it
is used, making your code easier to understand.

Declarelocal variablesimmediately beforetheir use. By declaring local variables where they are first
needed other programmers do not need to scroll to the top of the member function to find out what a
local variableisused for. Furthermore, your code may be more efficient becauseif that codeis never
reached the variable will not need to be allocated (Vision, 1996). The main disadvantage of this
approach isthat your declarations are dispersed throughout each of your member functions, making it
difficult to find all declarationsin large member functions.

Uselocal variablesfor onething only. Whenever you use alocal variable for more than one reason
you effectively decrease its cohesion, making it difficult to understand. Y ou also increase the chances
of introducing bugsinto your code from the unexpected side effects of previous values of alocal
variable from earlier in the code. Y es, reusing local variablesis more efficient because less memory
needs to be allocated, but reusing local variables decreases the maintainability of your code and makes
it morefragile. Thisusually isn't worth the small savings from not having to alocate more memory.

4.2.1 General Comments About Declaration

Local variablesthat are declared between lines of code, for example within the scope of an if statement, can
be difficult to find by people not familiar with your code.

One alternative to declaring local variablesimmediately before their first useisto instead declare them at the
top of the code. Because your member functions should be short anyway, see Section2.4.6, it shouldn’t be
all that bad having to go to the top of your code to determine what the local variableisall about.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 33

5. Standards for Parameters (Arguments) To Member
Functions

The standards that are important for parameters/arguments to member functions focus on how they are
named and how they are documented. Throughout thiswhite paper | will use the term parameter to refer to
amember function argument.

5.1 Naming Parameters

Parameters should be named following the exact same conventions as for local variables. Aswithlocal
variables, name hiding isanissue (if you aren’t using accessors).

Examples:
customer
inventoryltem
photonTorpedo
in
e

5.1.1 Alternative — Prefix Parameter Names with ‘a’ or ‘an’

A viable alternative, taken from Smalltalk, is to use the naming conventionsfor local variables, with the
addition of “a” or “an” on the front of the name. The addition of “a’ or “an” helpsto make the parameter
stand out from local variables and fields, and avoids the name-hiding problem. Thisis my preferred
approach.

Examples:
aCustomer
anlnventoryltem
aPhotonTorpedo
anlnputStream
anException

5.1.2 Alternative — Name Parameters Based on Their Type

Another alternative to naming variables, which | do not recommend at all, isto give them a name based on
their type. Thisisabad ideafor several reasons: First, the typeis already indicated in the definition of the
member function. Second, a parameter name like aString tells you much lessinformation than aname like
accountNumber or firstName.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf A

5.1.3 Alternative — Name Parameters The Same as Their Corresponding Fields (if

any)

A third alternative (Gosling, The Java Programming Language) is to name parameters that align to an
existing field with the same name asthe existing field. For example, if Account has an attribute called balance
and you needed to pass a parameter representing a new value for it the parameter would be called balance.
The field would be referred to asthis.balancein the code and the parameter would be referred to asbalance
(you could also invoke the appropriate accessor method). Although thisis aviable approach my experience
isthat you're playing with fire asit's too easy to forget the "this." | would avoid this approach if possible as
you'll likely have name hiding issues to deal with.

5.2 Documenting Parameters

Parameters to a member function are documented in the header documentation for the member function
using the javadoc @paramtag. Y ou should describe:

1. What it should beused for. Y ou need to document what a parameter is used for so that other
developers understand the full context of how the parameter is used.

2. Anyrestrictionsor preconditions. If the full range of values for a parameter is not acceptableto a
member function, then the invoker of that member function needsto know. Perhaps a member function
only accepts positive numbers, or strings of less than five characters.

3. Examples. If it isnot completely obvious what a parameter should be, then you should provide one or
more examplesin the documentation.

Tip —UseInterfacesfor Parameter Types

Instead of specifying aclass, such asObject, for the type of a parameter, if appropriate specify an interface,
such as Runnable, if appropriate. The advantage is that this approach, depending on the situation, can be
more specific (Runnable is more specific than Object), or may potentially be a better way to support
polymorphism (instead of insisting on a parameter being an instance of a class in a specific class hierarchy,
you specify that it supports a specific interface implying that it only needs to be polymorphically compliant
to what you need)

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 35

6. Standards for Classes, Interfaces, Packages, and
Compilation Units

This chapter concentrates on standards and guidelines for classes, interfaces, packages, and compilation
units. A classisatemplate from which objects are instantiated (created). Classes contain the declaration of
fields and member functions. Interfaces are the definition of acommon signature, including both member
functions and fields, which aclass that implements an interface must support. A package isacollection of
related classes. Finally, acompilation unit isasource code filein which classes and interfaces are declared.
Because Java allows compilation units to be stored in a database, an individual compilation unit may not
directly relate to a physical source codefile.

6.1 Standards for Classes

The standards that are important for classes are based on:
- Vighility

Naming conventions

Documentation conventions

Declaration conventions

The public and protected interface

6.1.1 Class Visibility

Classes may have one of two visihilities: public or package (default). Public visibility isindicated with the
keyword public and package visibility is not indicated (thereis no keyword). Public classesare visibleto all
other classes whereas classes with package visibility are visible only to classes within the same package.

1. Usepackagevisibility for classesinternal to a component. With package visibility you hide classes
within the package, effectively encapsulating them within your component.

2. Usepublicvisbility for the facades of components. Components are encapsul ated by facade classes,
classes that implement the interface of the component and that route messages to classes internal to the
component.

6.1.2 Naming Classes

The standard Java convention isto use afull English descriptor starting with the first letter capitalized using
mixed case for the rest of the name (Godling, Joy, Steele, 1996; Sandvik, 1996; Ambler, 1998a).

Examples:
Customer
Employee
Order
Orderltem
FileStream
String

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 36

6.1.3 Documenting a Class

The following information should appear in the documentation commentsimmediately preceding the
definition of aclass:

1

The purpose of the class. Developers need to know the general purpose of a class so they can
determine whether or not it meetstheir needs. | also make it a habit to document any good things to
know about aclass, for exampleisit part of apattern or are there any interesting limitationsto using it
(Ambler, 19983).

Known bugs’. If there are any outstanding problems with a class they should be documented so that
other devel opers understand the weaknesses/difficulties with the class. Furthermore, the reason for not
fixing the bug should also be documented. Notethat if abug is specific to asingle member function
then it should be directly associated with the member function instead.

The development/maintenance history of theclass. Itiscommon practice to include a history table
listing dates, authors, and summaries of changes madeto aclass (Lea, 1996). The purpose of thisisto
provide maintenance programmers insight into the modifications made to a class in the past, aswell as
to document who has done what to a class. Aswith member functions, thisinformation is better
contained in a configuration management system, not the sourcefileitself.

Document applicableinvariants. Aninvariant isaset of assertions about an instance or class that
must be true at all "stable" times, where a stable time is defined as the period before a member function
isinvoked on the object/class and immediately after amember function isinvoked (Meyer, 1988). By
documenting the invariants of a class you provide valuable insight to other devel opers asto how a
class can be used.

Theconcurrency strategy. Any classthat implements the interface Runnable should haveits
concurrency strategy fully described. Concurrent programming isacomplex topic that is new for many
programmers, therefore you need to invest the extratime to ensure that people can understand your
work. Itisimportant to document your concurrency strategy and why you chose that strategy over
others. Common concurrency strategies (Lea, 1997) include the following: Synchronized objects,
balking objects, guarded objects, versioned objects, concurrency policy controllers, and acceptors.

Blatant Advertising — Purchase Building Object Applications That Work today!

e Building Object Applications That Work is an intermediate-level book about
Building Object object-oriented development. It coversawide range of topics that few other

Apphcations that Work books dare to consider, including: architecting your applications so that

they’ re maintainable and extensible; OO analysis and design techniques; how
to design software for stand-alone, client/server, and distributed
environments; how to use both relational and object-oriented (OO) databases
to make your objects persistent; OO metrics, analysis and design patterns; OO
testing; OO user interface design; and a multitude of coding techniquesto
make your code robust. Visit
http://www.ambysoft.com/buildingObjectApplications.html for more details.

8Yes, itisbetter to fix bugs. However, sometimes you do not have the time to do so or it isn’t important to
your work at the moment. For example, you might know that a member function will not work properly when
passed a hegative number, but that it doeswork properly for positive numbers. Y our application only
passes it positive numbers, so you can live with the bug but decide to be polite and document that the
problem exists.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 37

6.1.4 Class Declarations

6.1.4.1 Apply The “final” Keyword Sensibly

Use the keyword final to indicate that your class can not be inherited from. Thisisadesign decision onthe
part of the original developer, one that should not be taken lightly.

6.1.4.2 Ordering Member Functions and Fields

One way to make your classes easier to understand is to declare them in a consistent manner. The common
approach in Javaisto declare a classin the order of most visible to least visible (NPS, 1996), enabling you to
discover the most important features, the public ones, first. Laffra (1997) points out that constructors and
finalize() should be listed first, presumably because these are the first member functions that another
developer will look at first to understand how to use the class. Furthermore, because we have a standard to
declare al fields as private, the declaration order really boils down to:

constructors

finalize()

public member functions

protected member functions

private member functions

private fields

Within each grouping of member functionsit is common to list them in alphabetical order. Many developers
chooseto list the static member functions within each grouping first, followed by instance member
functions, and then within each of these two sub-groupings list the member functions alphabetically. Both
of these approaches are valid, you just need to choose one and stick to it.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 38

6.1.5 Minimize the Public and Protected Interface

One of the fundamental's of object-oriented design isto minimize the public interface of aclass. Thereare
several reasons for this:

1. Learnability. Tolearn how to use aclass you should only have to understand its public interface. The
smaller the public interface, the easier aclassisto learn.

2. Reduced coupling. Whenever the instance of one class sends a message to an instance of another
class, or directly to the classitself, the two classes become coupled. Minimizing the public interface
implies that you are minimizing the opportunities for coupling.

3. Greater flexibility. Thisisdirectly related to coupling. Whenever you want to change the way that a
member function in your public interfaceisimplemented, perhaps you want to modify what the member
function returns, then you potentially have to modify any code that invokes the member function. The
smaller the public interface the greater the encapsul ation and therefore the greater your flexibility.

Itisclear that it isworth your while to minimize the public interface, but often what isn’t so clear isthat you
also want to minimize the protected interface aswell. The basic ideaisthat from the point of view of a
subclass, the protected interfaces of all of its superclasses are effectively public — Any member functionin
the protected interface can be invoked by asubclass. Therefore, you want to minimize the protected
interface of aclass for the same reasons that you want to minimize the public interface.

Tip —Define The Public Interface First

Most experienced devel opers define the public interface of aclass before they begin codingit. First, if you
do not know what services/behaviors aclasswill perform, then you still have some design work to do.
Second, it enables them to stub out the class quickly so that other developers who rely on it can at least
work with the stub until the “real” class has been developed. Third, this approach provides you with an
initial framework around which to build your class.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 39

6.2 Standards for Interfaces
The standards that are important for interfaces are based on:

Naming conventions
Documentation conventions

6.2.1 Naming Interfaces

The Java convention is to name interfaces using mixed case with the first letter of each word capitalized. The
preferred Java convention for the name of an interface isto use adescriptive adjective, such asRunnable or
Cloneable, although descriptive nouns, such as Singleton or Datal nput, are also common (Gosling, Joy,
Stecle, 1996).

Alternatives:

1

Prefix theletter ‘I’ totheinterface name. Coad and Mayfield (1997) suggest appending the letter ‘I’ to
the front of an interface names, resulting in names like 1 Singleton or |Runnable. This approach helpsto
distinguish interface names from class and package names. | like this potential naming convention for
the simplefact that it makes your class diagrams, sometimes referred to as object models, easier to read.
The main disadvantage is that the existing interfaces, such asRunnable, aren’t named using this
approach, and | do not see them ever changing. Therefore | chose the defacto standard described
above. Thisinterface naming conventionis also popular for Microsoft’s COM/DCOM architecture.

Postfix ‘1fc’ onto theinterface name. Lea (1996) suggests appending ‘Ifc’ to the end of an interface
name, resulting in names like Singletonlfc or Runnablel fc, whenever the name of an interfaceissimilar
to that of aclass(Lea, 1996). | likethe general idea, although | would be tempted to prefix the name with
thefull word ‘Interface.” This suggestion suffers from the same problem as the one above.

6.2.2 Documenting Interfaces

The following information should appear in the documentation commentsimmediately preceding the
definition of an interface:

1

Thepurpose. Before other developerswill use an interface, they need to understand the concept that it
encapsulates. I1n other words, they need to know its purpose. A really good test of whether or not you
need to define an interface is whether or not you can easily describe its purpose. If you have
difficulties describing it, then chances are pretty good you do not need the interface to begin with.
Because the concept of interfacesis new to Java, people are not yet experienced in their appropriate use
and they are likely to overuse them because they are new. Just like the concept of inheritance, andin
particular multiple inheritance, was greatly abused by devel opers new to object-orientation, | suspect
that interfaces will also be greatly abused at first by programmers new to Java.

How it should and shouldn’t be used. Developers need to know both how an interface isto be used, as
well as how it shouldn’t be used (Coad & Mayfield, 1997).

Because the signature for member functionsis defined in an interface, for each member function signature
you should follow the member function documentation conventions discussed in chapter 2.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 40

6.3 Standards for Packages

The standards that are important for packages are based on:
Naming conventions
Documentation conventions

6.3.1 Naming Packages
There are several rules associated with the naming of packages. In order, theserules are:

1. ldentifiersareseparated by periods. To make package names more readable, Sun suggests that the
identifiersin package names be separated by periods. For example, the package name java.ant is
comprised of two identifiers, java and awt.

2. Thesandard javadigtribution packagesfrom Sun begin with theidentifier ‘java’ or ‘javax’. Sun has
reserved thisright so that the standard java packages are named in a consistent manner regardl ess of
the vendor of your Java development environment.

3. Local package namesbegin with an identifier that isnot all upper case. Local packages are ones that
are used internally within your organization and that will not be distributed to other organizations.
Examples of these package names include per sistence.mapping.relational and interface.screen.

4. Global package namesbegin with thereversed I nternet domain namefor your organization. A
package that isto be distributed to multiple organizations should include the name of the originating
organization’s domain name, with the top-level domain typein lower case. For example, to distribute the
previous packages, | would name them com.ambysoft.www.per sistence.mapping.relational and
com.ambysoft. www.interface.screens. The prefix (.com) should be lower case and should be one of the
standard Internet top-level domain names (currently com, edu, gov, mil, net, org).

5. Package names should besingular. The common convention isto use singular names for package
names, such asinterface.screen, and not a plural, such asinterface.screens.

6.3.2 Documenting a Package

Y ou should maintain one or more external documents that describe the purpose of the packages developed
by your organization. For each package you should document:

1. Therationalefor the package. Other developers need to know what a package isall about so that they
can determine whether or not they want to useit, and if it is a shared package whether or not they want
to enhance or extend it.

2. Theclassesin the package. Includealist of the classes and interfaces in the package with a brief, one-
line description of each so that other devel opers know what the package contains.

Lea (1996) suggests creating an HTML file calledindex.html for each package, putting the file into the
appropriate directory for the package. A better name would be the fully qualified name of the package,
postfixed with .html, so that you do not have to worry about accidentally overwriting one package
documentation file with another. | like Lea' sidea, in general, but my experience has shown that similarly
named files get overwritten often enough to modify his approach slightly.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 41

6.4 Standards for Compilation Units

The standards and guidelines for compilation units are based on:
Naming conventions
Documentation conventions

6.4.1 Naming a Compilation Unit

A compilation unit, in this case a source code file, should be given the name of the primary class or interface
that isdeclared within it. Use the same name for the package/class for the file name, using the same case.
The extension java should be postfixed to the file name.

Examples:
Customer java
Singleton.java
SavingsAccount.java

6.4.2 Documenting a Compilation Unit

Although you should strive to have only one class or interface declaration per file, it sometimes makes
sense to define several classes (or interfaces) in the samefile. My general rule of thumb isthat if the sole
purpose of class B isto encapsulate functionality that is needed only by class A then it makes sense that
class B appear in the same source code file asclass A°. Asaresult, | have separated the following
documentation conventions that apply to a source code file, and not specifically to aclass:

1. For fileswith several classes, list each class. If afile contains more than one class you should provide
alist of the classes and a brief description for each (Lea, 1996).

2. [OPTIONAL] Thefilenameand/or identifying information. The name of the file should be included at
thetop of it (Lea, 1996). The advantageisthat if the codeis printed you know what the sourcefile for
the codeis. Thedisadvantageisthat if you change the source file name you also need to update your
documentation, therefore if you have a sophisticated source control system (and if you don’t then get
one) you might want to not include the source file name.

3. Copyright information. If applicable you should indicate any copyright information for the file (Lea,
1996). Itiscommon toindicate the year of the copyright and the name of the individual/organization
that holds the copyright. Note that the code author may not be the holder of the copyright.

® The concept of an “inner” classwas introduced in JDK 1.1, which would be one option for implementing
classB.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 12

7. Miscellaneous Standards/Issues

In this chapter | want to share with you several standards/quidelines that are important, but that are general
enough that they need their own chapter.

7.1 Reuse

Any Javaclass library or package that you purchase/reuse from an external source should be certified as
100% pure Java (Sun, 1997). By enforcing this standard you are guaranteed that what you are reusing will
work on all platforms that you choose to deploy it on. Y ou can obtain Java classes, packages, or applets
from avariety of sources, either athird-party development company that specializesin Javalibraries or
another division or project team within your organization.

Scott’s Soapbox — 100% Pureis 100% Dead On

In my opinion the 100% Pure effort from Sun is exactly what Java needs. In my second book, Building
Object Applications That Work (Ambler, 1998a), | had afew harsh words about the portability of Java.
There are two portability issues with Java: Source code portability and bytecode portability. At the time of
thiswriting, May 1997, | think that devel opers porting from JDK 1.0 to JDK 1.1 now have a better
appreciation for what | was talking about. In many ways the 100% Pure effort is Sun’ s recognition that
portability doesn’t come free just because you use Java, you actually have to work at it to ensure that your
codeis portable. With multiple vendors of Java, several of whom would like to mold Javain their own
image, without something like the 100% Pure effort Java code will become just as portable as C code — Not
very.

Sun’ s message to the other Java vendors and to Java developersis clear: Proprietary Java solutions will not
betolerated.

7.2 Use Wild Cards When Importing Classes

Theimport statement allows the use of wildcards when indicating the names of classes. For example, the
statement

import java.awt.*;
bringsin all of the classesin the package javaawt at once. Actually, that’s not completely true. What really
happensisthat every classthat you use from the java.awt package will be brought into your code when it is
compiled, classes that you do not use will not be.

7.2.1 Alternative — Explicitly Specify Each Imported Class

Another approach isto fully qualify the name of the classes that your code uses (Laffra, 1997; Vision, 1996),
as shown in the example below:

import java.awt.Color;
import java.awt.Button;
import java.awt.Container;

The problem with this approach is that it increases your maintenance burden — you need to keep your
import list accurate whenever you add a new class (the compiler will force this on you) and whenever you
stop using a class (you need to do this yourself).

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 43

7.3 Optimizing Java Code

| have left my discussion of Java code optimization toward the end of thiswhite paper for Do not waste

areason: optimizing your code is one of the last things that programmers should be your time
thinking about, not one of thefirst. My experienceisthat you want to leave optimization optimizing
to the end because you want to optimize only the code that needsit — very often asmall codethat
percentage of your code resultsin the vast majority of the processing time, and thisisthe nobody cares
code that you should be optimizing. A classic mistake made by inexperienced about.

programmersisto try to optimize all of their code, even code that already runs fast
enough. Personally, | prefer to optimize the code that needs it and then move on to more
interesting things than trying to squeeze out every single CPU cycle.

g&g@g&f Prepare Code for
With Models Inspections
Understand Preparg
Models Integration
Plan
Write Integrate and Packaged
Source Code Package Application,
u X Source Code

Document Source

"Build" the
Code Software
Reuse Existing
Code and Optimize Code
Components

Figure 1. The Program process pattern.

Figure 1 presents the Program stage process pattern (Ambler, 1998b) which describes the iterative process
by which you develop source code. This process pattern shows that code optimization is a part of
programming, but only one of many parts. A word of advicethat all coders should take to heart.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 44

Tip —Define Your Project’s Development Priorities

Everybody has their own idea about what isimportant, and software developers are no different. Theissue
isthat your project, and your organization, needs to define what their development priorities are so that all
team members are working to the same vision. Maguire (1994) believes that your organization needs to
establish aranking order for the following factors: size, speed, robustness, safety, testability,
maintainability, simplicity, reusability, and portability. These factors define the quality of the software that
you produce, and by prioritizing them you will help to define the development goals for your team and will
reduce the opportunities for disagreement between your developers.

What should you look for when optimizing code? Koenig (1997) points out that the most important factors
arefixed overhead and performance on large inputs. Thereason for thisis simple: fixed overhead dominates
the runtime speed for small inputs and the algorithm dominates for large inputs. Hisrule of thumbisthat a
program that works well for both small and large inputswill likely work well for medium-sized inputs.

Developers who have to write software that work on several hardware platforms and/or operating systems
need to be aware of idiosyncrasiesin the various platforms. Operations that might appear to take a
particular amount of time, such as the way that memory and buffers are handled, often show substantial
variations between platforms. It iscommon to find that you need to optimize your code differently
depending on the platform.

Blatant Advertising — Purchase Process Patterns today!
This book presents a collection of process patterns for successfully

— initiating a software project and taking it through the construction
PROC ESS phase. It providesawealth of advice for engineering requirements,

PATTERNS modeling, programming, and testing. It puts these topics in the context
Buibding Large-Sccle Systems Using of aproven software process for the development of large-scale,

Obfeat Teshnolegy mission-critical software, covering topicsthat you typically don’t find
scort wo amsine - in other books about object-oriented development such as project

management, quality assurance, risk management, and deliverables
management. Object-oriented development is hard, particularly if you
are building systems using n-tier technology such as Enterprise
JavaBeans (EJB) or even the “simple” Javaplatform, and you need to
understand the big picture to be successful. Process Patterns, and its
sister book, More Process Patterns give you that big picture. For more
information, and to order online, visit
http://www.ambysoft.com/processPatterns.html

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 45

Another issue to be aware of when optimizing codeisthe priorities of your users Y ou do not always
because depending on the context people will be sensitive to particular delays. For need to make your
example, your userswill likely be happier with a screen that drawsitself immediately coderun faster to
and then takes eight secondsto |oad data than with a screen that draws itself after optimizeit in the
taking five seconds to load data. 1n other words most users are willing to wait alittle eyes of your
longer aslong asthey’ re given immediate feedback, important knowledge to have users.

when optimizing your code.

Although optimization may mean the difference between the success and failure of your application, never
forget that it isfar more important to get your code to work properly. Never forget that slow software that
worksis amost always preferable to fast software that does not.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 46

7.4 Writing Java Test Harnesses

Object-oriented testing is critical topic that has been all but ignored by the object devel opment community.
Thereality isthat either you or someone else will have to test the software that you write, regardless of the
language that you' ve chosen to work in. A test harness is the collection of member functions, some
embedded in the classes themselves (thisis called built-in tests) and some in specialized testing classes,
that is used to test your application.

1

Prefix all testing member function nameswith ‘test’. Thisallowsyou to quickly find all the testing
member functionsin your code. The advantage of prefixing the name of test member functions with
‘test’ isthat it allows you to easily strip your testing member functions out of your source code before
compiling the production version of it.

Nameall member function test member functions consistently. Method testing is the act of verifying
that a single member function performs as defined. All member function test member functions should
be named following the format ‘ testM ember FunctionNameFor TestName’. For example, the test harness
member functions to test withdrawFunds() would include testWithdrawFundsFor I nsufficientFunds()
and testWithdrawFundsFor SmallWithdrawal (). If you have a series of tests for withdrawFunds() you
may choose to write amember function called testWithdrawFunds() that invokes all of them.

Nameall classtest member functions consistently. Classtesting isthe act of verifying that asingle
class performs asdefined. All classtest member functions should be named following the format
‘testSelfFor TestName'. For example, the test harness member functions to test the Account class
testSelfFor SimultaneousAccess() and testSelfFor Reporting().

Createasinglepoint for invoking thetestsfor aclass. Develop astatic member function called
testSelf() that invokes all class testing and method testing member functions.

Document your test harness member functions. The documentation should include a description of
the test as well as the expected results of thetest. If you choose to document your testsin an external
document, such as a master test/QA plan (Ambler, 1998b; Ambler, 1999) then refer to the appropriate
section of that plan in your source code documentation to support traceability.

Further Reading In Object-Oriented Testing

If you'reinterested in learning more about object-oriented testing then you'rein luck because I’ ve written a
fair bit on the topic. | started with something called Full Lifecycle Object-Oriented Testing (Ambler, 1998g;
Ambler, 1998b; Ambler, 2000d), also known as FLOOT, and evolved thiswork into the Test In the Small
process pattern (Ambler, 1998b) and the Test In The Large process pattern (Ambler, 1999). |’ve also set up
atesting reading list, http://www.ambysoft.com/booksTesting.html, within my online bookstore that you’ |
find useful aswell as provided several linksto testing and quality assurance related sites at The Process
Patterns Page (http://www.ambysoft.com/processPatter nsPage.html).

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 47

8. The Secrets of Success

The good news isthat the reason why | wrote this white paper is because | want to help make Java
developers more productive. The bad newsisthat having a standards document in your possession
doesn’t automatically make you more productive as adeveloper. To be successful you must choose to
become more productive, and that means you must apply these standards effectively.

8.1 Using These Standards Effectively

The following words of advice will help you to use the Java coding standards and guidelines described in
this white paper more effectively:

1

Understand the standards. Take the time to understand why each standard and guideline leads to
greater productivity. For example, do not declare each local variable on its own line just because | told
you to, do it because you understand that it increases the understandability of your code.

Believein them. Understanding each standard is a start, but you also need to believe in them too.
Following standards shouldn’t be something that you do when you have the time, it should be
something that you always do because you believe that thisisthe best way to code. It has been years
since | have had to do an “all-nighter” writing code, in most part because | make it a point to use tools
and techniques that make me a productive developer. | believein following standards because it has
been my experience that intelligent standards applied appropriately lead to significant increasesin my
productivity as adeveloper.

Follow them whileyou are coding, not as an afterthought. Documented code is easier to understand
whileyou are writing it aswell as after it iswritten. Consistently named member functions and fields are
easier to work with during devel opment as well as during maintenance. Clean codeis easier to work
with during development and during maintenance. The bottom lineis that following standards will
increase your productivity while you are devel oping as well as make your code easier to maintain
(hence making maintenance devel opers more productive too). | have seen too many people write
sloppy code while they are developing, and then spend almost aslong cleaning it up at the end so that
it will passinspection. That isstupid. If you write clean code right from the beginning you can benefit
fromit whileyou are creating it. That issmart.

Makethem part of your quality assurance process. Part of a code inspection should be to ensure that
source code follows the standards adopted by your organization. Use standards as the basis from
which you train and mentor your developersto become more effective.

Adopt the standar dsthat make the most sensefor you. Y ou do not need to adopt every standard at
once, instead start with the ones that you find the most acceptable, or perhaps the least unacceptable,
and then go from there. Bring standards into your organization in stages, slowly but surely.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 48

8.2 Other Factors That Lead to Successful Code

I’d like to share several techniques with you from Building Object Applications That Work (Ambler, 1998a)
that, in addition to following standards, |ead to greater productivity:

1

Program for people, not the machine. The primary goal of your development efforts should be that
your codeis easy for other people to understand. If no one else can figureit out, then it isn’t any good.
Use naming conventions. Document your code. Paragraphit.

Design first, then code. Have you ever been in asituation where some of the code that your program
relies on needs to be changed? Perhaps a new parameter needs to be passed to amember function, or
perhaps a class needs to be broken up into several classes. How much extrawork did you haveto do
to make sure that your code works with the reconfigured version of the modified code? How happy
wereyou? Did you ask yourself why somebody didn’t stop and think about it first when he or she
originally wrote the code so that this didn’t need to happen? That they should have DESIGNED it first?
Of courseyou did. If you take the time to figure out how you are going to write your code before you
actually start coding you' |l probably spend lesstime writing it. Furthermore, you'll potentially reduce
the impact of future changes on your code simply by thinking about them up front.

Develop in small steps. | have always found that developing in small steps, writing afew member
functions, testing them, and then writing afew more member functionsis often far more effective than
writing awhole bunch of code all at once and then trying to fix it. It ismuch easier to test and fix ten
lines of code than 100, in fact, | would safely say that you could program, test, and fix 100 lines of code
inten 10-lineincrementsin less than half the time than you could write a single one-hundred line block
of codethat did the same work. Thereason for thisissimple. Whenever you are testing your code and
you find a bug you almost always find the bug in the new code that you just wrote, assuming of course
that the rest of the code was pretty solid to begin with. Y ou can hunt down abug alot faster in asmall
section of codethan in abig one. By developing in small incremental steps you reduce the average
time that it takes to find a bug, which in turn reduces your overall development time.

Read, read, read. Thisindustry moves far too quickly for anyone to sit on their laurels. Infact, friends
of minewithin Sun estimate that it’safull timejob for two to three people just to keep up with what's
happening with Java, let alone what’ s happening in the object-orientation field or even development in
general. That saysto methat you need to invest at |east some time trying to keep up. To make things
easier for you, I’ ve created an online reading list indicating what | consider to be the key devel opment
books that you should consider reading.

Scott’s Suggested Reading List: An Online Bookstore

Visit http://www.ambysoft.com/books.html for a collection of reading lists for key topicsin software
development, including Java, patterns, object-orientation, and the software process. Through the
Amazon.com Associates program I’ ve set it up so that you can order the books that you want right on the
spot. It'saseasy as clicking on the cover of the book that you want.

5.

Work closely with your users. Good developers work closely with their users. Users know the
business. Users are the reason why developers create systems, to support the work of users. Users
pay the bills, including the salaries of developers. Y ou simply can’'t develop a successful system if you
do not understand the needs of your users, and the only way that you can understand their needsisif
you work closely with them.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 49

Keep your codesimple. Complex code might be intellectually satisfying to write but if other people
can’t understand it then it isn’t any good. Thefirst time that someone, perhaps even you, is asked to
modify apiece of complex code to either fix a bug or to enhance it chances are pretty good that the code
will get rewritten. Infact, you’ ve probably even had to rewrite somebody else’s code because it was
too hard to understand. What did you think of the original developer when you rewrote their code, did
you think that person was agenius or ajerk? Writing code that needs to be rewritten later is nothing to
be proud of, so follow the KISSrule: Keep it simple, stupid.

L earn common patterns, antipatterns, and idioms. Thereisawealth of analysis, design, and process
patterns and antipatterns, aswell as programming idioms, available to guide you in increasing your
development productivity. My experience [Ambler, 1998b] isthat patterns provide the opportunity for
very high levels of reuse within your software development projects. For moreinformation, visit The
Process Patterns Resource Page (http://www.ambysoft.conVprocessPatter nsPage.html) for linksto key
patterns resources and process-oriented web sites.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 50

9. Proposed javadoc Tags for Member Functions

From the discussions about documentation in this white paper it should be clear that javadoc needs afew
moretags. Whilel grant that it isimportant to keep javadoc simple, at the same time it also needs to be
sufficient for the task at hand. Asaresult, | wish to propose the following new tagsthat | hope will be
supported in afuture version of javadoc.

Proposed Tag Used for | Purpose
@bug description Classes, Describes aknown bug with the class or member function.
Member One tag per bug should be used.
Functions
@concurrency description Classes, Describes the concurrency strategy/approach taken by
Member the class’member function/field. The execution context for
Functions, | amember function should be described at this point.
Fields
@copyright year description Classes Indicatesthat aclassis copyrighted, the year that it was
copyrighted in, and any descriptive information such as
the name of the individual/organization that holds the
copyright.
@example description Classes, Provides one or more examples of how to use agiven
Member class, member function, or field. This helps developersto
Functions, | quickly understand how to use your classes.
Fields
@fyi description Classes, Providesinformation about design decisions that you
Interfaces have made and/or good things to know about parts of
Member your code.
Functions,
Fields
@history description Classes, Describes how a class/member function has been modified
Member over time. For each change, the description should
Functions | include: who made it, when it was made, what was done,
why it was done, and areference to the change request
and/or user requirement that resulted init.
@modifiesno Member Indicates that a member function does not modify an
Functions | object
@modifies yes description Member Indicates that a member function modifies an object and
Functions | describes how it does so.
@postcondition description Member Describes a postcondition that istrue after amember
Functions | function has beeninvoked. Use one tag per
postcondition.
@precondition description Member Describes a precondition that must be true before the
Functions | member function can be safely invoked. Use onetag per
precondition.
@reference description Classes, Describes areference to an external document that
Interfaces, | documents pertinent business rules or information that is
Member relevant to the source code being documented.
Functions,
Fields
@values Fields Describes the possible values of afield, including ranges

and/or distinct values.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 51

Since | originally wrote this section of the document, Sun has introduced something called "doclets" which
give you the ability to extend javadoc (i.e. add new tags). For more information about doclets, and about
any proposed new tags, please refer to the information posted at http://java.sun.comabout javadoc.

10.Where To Go From Here

This paper isareally good start at understanding how to write robust Java code, but if you truly want to
become a superior Java programmer then | highly suggest reading the book The Elements of Java Style
(Vermeulen et. al., 2000). Thisbook presents awider range of guidelinesthan what is presented herein this
paper, and more importantly presents excellent source code examples. This paper was combined with Rogue
Wave'sinternal coding standards and then together were evolved to become The Elements of Java Style,

so you should find the book to be an excellent next step in your learning process. Visit
http://www.ambysoft.com/el ementslavaStyle.html for more details.

10.1 Creating Your Own Internal Corporate Guidelines?

10.1.1 Using This PDF File

Thisfileiscopyrighted.
You are welcome to use thisfile, in itsentirety, free of charge for the following purposes:
Y our own personal learning experience.
Y our organization’sinternal use as either a corporate guideline or as areference document.

10.1.2 Obtaining the Source Document for This File

The source, in Microsoft Word format, isfor sale for $1,000 US. If your organization iswriting its own
internal guidelines, specific to your own environment, then you should seriously consider using this
document from abase from which to start. For details email scott@ambysoft.com

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 52

11.Summary

In this white paper we discussed many standards and guidelines for Java developers. Because thiswhite
paper isreasonably large | have summarized them here for your convenience. | highly suggest reprinting
the pages of this chapter and pinning them on the wall of your workspace so that they are at your fingertips.

This chapter is organized into several one-page summaries of our Java coding standards, collected by topic.
These topics are:

Java naming conventions

Java documentation conventions

Java coding conventions

Before we summarize the rest of the standards and guidelines described in this white paper, | would liketo
reiterate the prime directive:

When you go againgt a standard, document it. All standards, except for thisone, can be broken. If
you do so, you must document why you broke the standard, the potential implications of breaking
the standard, and any conditions that may/must occur before the standard can be applied to this
situation.

A good developer knowsthat there
IS moreto development than programming.

A great developer knowsthat there
ismoreto development than development.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

11.1 Java Naming Conventions
With afew exceptions discussed below, you should always use full English descriptors when naming
things. Furthermore, you should use lower case lettersin general, but capitalize thefirst letter of class
names and interface names, aswell asthefirst letter of any non-initial word.

General Concepts.
- Usefull English descriptors
Use terminology applicable to the domain
Use mixed case to make names readable
Use short forms sparingly, but if you do so then use them intelligently
Avoid long names (less than 15 charactersis agood idea)
Avoid namesthat are similar or differ only in case

Item Naming Convention Example
Arguments/ Use afull English description of value/object being passed, customer, account,
parameters possibly prefixing the namewith ‘a or ‘an.” Theimportant -or-

thing isto choose one approach and stick toit. aCustomer, anAccount
Fields/ Use afull English description of thefield, with thefirst letter | firstName, lastName,
fields/ in lower case and thefirst letter of any non-initial word in war pSpeed
properties uppercase.
Boolean getter | All boolean getters must be prefixed with theword ‘is.” If isPersistent(),
member you follow the naming standard for boolean fields described | isString(), isCharacter ()
functions above then you simply give it the name of thefield.
Classes Useafull English description, with thefirst |etters of all Customer,

words capitalized. SavingsAccount
Compilation Use the name of the class or interface, or if thereismorethan | Customer java,
unit files one classin the file than the primary class, prefixed with SavingsAccount.java,

‘.java toindicateit isasource codefile. Singleton.java
Components/ Use afull English description which describes what the okButton, customer List,
widgets component is used for with the type of the component fileMenu

concatenated onto the end.
Constructors Use the name of the class. Customer (),

SavingsAccount()

Destructors Java does not have destructors, but instead will invoke the finalize()

finalize() member function before an object is garbage

collected.
Exceptions It isgenerally accepted to use the letter ‘€' to represent e

exceptions.
Final static Use all uppercase | etters with the words separated by MIN_BALANCE,
fields underscores. A better approach isto use final static getter DEFAULT_DATE
(constants) member functions because it greatly increases flexibility.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

Java Naming Conventions Continued

Item Naming Convention Example

Getter member | Prefix the name of the field being accessed with ‘get.’ getFirstName(),

functions getL astName(),
getWar pSpeeed()

Interfaces Use afull English description describing the concept that the | Runnable, Contactable,

interface encapsulates, with thefirst letters of all words
capitalized. Itiscustomary to postfix the name with either
‘able,” ‘ible,” or ‘er’ but thisis not required.

Prompter, Singleton

Local variables

Use full English descriptions with the first letter in lower case

grandTotal, customer,

but do not hide existing fields/fields. For example, if you newAccount
have afield named ‘firstName' do not have alocal variable
caled ‘firstName.’
Loop counters | Itisgenerally accepted to use the lettersi, j, or k, or thename | i, j, k, counter
‘counter.’
Packages Use full English descriptions, using mixed case with thefirst | java.awt,
letter of each word in uppercase, everything elsein lower com.ambysoft www.
case. For global packages, reverse the name of your Internet | persistence.mapping
domain and concatenate to this the package name.
Member Use afull English description of what the member function openFileg(), addAccount()
Functions does, starting with an active verb whenever possible, with

thefirst letter in lower case.

Setter member
functions

Prefix the name of the field being accessed with ‘set’.

setFirstName(),
setl astName(),
setWar pSpeed()

Although | do not agree with the following conventions, Sun suggests that for local variables of the given
types you can give them short names. A much better convention isto use afull English descriptor — Do not

belazy.

Variable Type Suggested Naming Convention
offset off
length len
byte b
char c
double d
float f
long I
Object 0
String S
Arbitrary value \

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 55

11.2 Java Documentation Conventions

A really good rule of thumb to follow regarding documentation isto ask yourself if you’ ve never seen the
code before, what information would you need to effectively understand the code in a reasonable amount of
time.

General Concepts.
- Comments should add to the clarity of your code
If your program isn’t worth documenting, it probably isn’t worth running
Avoid decoration, i.e. do not use banner-like comments
Keep comments simple
Write the documentation before you write the code
Document why something is being done, not just what

11.2.1 Java Comment Types
The following chart describes the three types of Java comments and suggested uses for them.

Comment Type | Usage Example

Documentation Use documentation comments [**
immediately before declarations of Customer — A customer is any
interfaces, classes, member functions, person or organization that we
and fields to document them. sell services and productsto.
Documentation comments are processed
by javadoc, see below, to create external @author SW. Ambler
documentation for aclass. */

Cstyle Use C-style comments to document out I*
lines of code that are no longer This code was commented out
applicable, but that you want to keep just by J.T. Kirk on Dec 9, 1997
in case you users change their minds, or because it was replaced by the
because you want to temporarily turn it preceding code. Deleteit after two
off while debugging.” yearsif it isstill not applicable.

... (the source code)
*/

Singleline Use single line commentsinternally /I Apply a5% discount to all invoices
within member functions to document Il over $1000 as defined by the Sarek
business logic, sections of code, and /I generosity campaign started in
declarations of temporary variables. /I Feb. of 1995,

Y Thisisn’t actually a standard, it's more of aguideline. Theimportant thing isthat your organization
should set a standard as to how C-style comments and single-line comments are to be used, and then to
follow that standard consistently.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf

11.2.2 What To Document

The following chart summarizes what to document regarding each portion of Java code that you write.

Item What to Document
Arguments/ Thetype of the parameter
parameters What it should be used for
Any restrictions or preconditions
Examples
Fields/ Its description
fields/properties Document all applicable invariants
Examples

Concurrency issues
Visibility decisions

Classes

The purpose of the class

Known bugs

The devel opment/maintenance history of the class
Document applicable invariants

The concurrency strategy

Compilation units

Each clasg/interface defined in the class, including a brief description
Thefile name and/or identifying information
Copyright information

Getter member Document why lazy initialization was used, if applicable
function
Interfaces The purpose
How it should and shouldn’t be used
Local variables Its use/purpose

Member Functions
— Documentation

What and why the member function does what it does
What a member function must be passed as parameters
What a member function returns

Known bugs

Any exceptions that a member function throws
Visibility decisions

How a member function changes the object

Include a history of any code changes

Examples of how to invoke the member function if appropriate
Applicable preconditions and postconditions
Document all concurrency

Member Functions

Control structures

—Internal Why, aswell as what, the code does
comments Locd variables

Difficult or complex code

The processing order
Package Therational e for the package

The classesin the package

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 57

11.3 Java Coding Conventions (General)

There are many conventions and standards which are critical to the maintainability and enhancability of
your Java code. 99.9% of the timeit is more important to program for people, your fellow developers, than it
isto program for the machine. Making your code understandable to othersis of utmost importance.

Convention

Target Convention

Accessor Consider using lazy initialization for fields in the database

member Use accessors for obtaining and modifying all fields

functions Use accessors for ‘ constants”
For collections, add member functionsto insert and remove items
Whenever possible, make accessors protected, not public

Fields Fields should always be declared private
Do not directly access fields, instead use accessor member functions
Do not usefinal static fields (constants), instead use accessor member functions
Do not hide names
Alwaysinitialize static fields

Classes Minimize the public and protected interfaces

Define the public interface for a class before you begin coding it
Declare the fields and member functions of aclassin the following order:
constructors
finalize()
public member functions
protected member functions
private member functions
private field

Local variables

Do not hide names

Declare onelocal variable per line of code
Document local variables with an endline comment
Declarelocal variablesimmediately before their use
Uselocal variablesfor onething only

Member
Functions

Document your code

Paragraph your code

Use whitespace, one line before control structures and two before member function
declarations

A member function should be understandable in less than thirty seconds

Write short, single command lines

Restrict the visibility of amember function as much as possible

Specify the order of operations

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 58

Glossary

100% pure —Effectively a“seal of approval” from Sun that says that a Java applet, application, or package,
will runon ANY platform which supports the Java VM.

Accessor —A member function that either modifies or returnsthe value of afield. Also known as an access
modifier. See getter and setter.

Analysispattern — A modeling pattern that describes a sol ution to a business/domain problem.

Antipattern — An approach to solving a common problem, an approach that in time proves to be wrong or
highly ineffective.

Argument — See parameter.

Attribute — A variable, either aliteral datatype or another object, that describes a class or an instance of a
class. Instance fields describe objects (instances) and static fields describe classes. Fields are also referred
to asfields, field variables, and properties.

BDK — Beans development Kit.

Block — A collection of zero or more statements enclosed in (curly) braces.

Braces — The characters{ and }, known as an open brace and a close brace respectively, are used to define
the beginning and end of ablock. Braces are also referred to as‘ curlies' (do not ask).

Class — A definition, or template, from which objects are instantiated.
Classtesting — The act of ensuring that a class and itsinstances (objects) perform as defined.

Compilation unit — A source codefile, either aphysical one on disk or a“virtual” one stored in a database,
in which classes and interfaces are declared.

Component — A user interface item such as alist, button, or window.

Constant getter — A getter member function which returns the value of a*“constant,” which may in turn be
hard coded or calculated if need be.

Constructor —A member function which performs any necessary initialization when an object is created.
Containment — An object contains other objectsthat it collaborates with to perform its behaviors. This can
be accomplished either the use of inner classes (JDK 1.1+) or the aggregation of instances of other classes
within an object (JDK 1.0+).

CPU - Central processing unit.

C-style comments — A Java comment format, /* ... */, adopted from the C/C++ language that can be used to
create multiple-line comments. Commonly used to “document out” unneeded or unwanted lines of code

during testing.

Design pattern — A modeling pattern that describes a solution to a design problem.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 59

Destructor —A C++ class member function that is used to remove an object from memory onceitisno
longer needed. Because Java manages its own memory, thiskind of member function is not needed. Java
does, however, support amember function called finalize() that is similar in concept.

Documentation comments — A Javacomment format, /** ... */, that can be processed by javadoc to provide
external documentation for aclassfile. The main documentation for interfaces, classes, member functions,
and fields should be written with documentation comments.

Field— See attribute.
finalize() — A member function that is automatically invoked during garbage collection before an object is
removed from memory. The purpose of this member function isto do any necessary cleanup, such asthe

closing of openfiles.

Garbage collection — The automatic management of memory where objects that are no longer referenced are
automatically removed from memory.

Getter — A type of accessor member function that returnsthe value of afield. A getter can be used to
answer the value of aconstant, which is often preferable to implementing the constant as a static field
because thisis amore flexible approach.

HTML — Hypertext markup language, an industry-standard format for creating web pages.

Indenting — See paragraphing.

I nline comments — The use of aline comment to document aline of source code where the comment
immediate follows the code on the same line as the code. Single line comments are typically used for this,

although C-style comments can al so be employed.

I nterface — The definition of acommon signature, including both member functions and fields, which a class
that implements an interface must support. Interfaces promote polymorphism by composition.

I/O - Input/output.

Invariant — A set of assertions about an instance or class that must be true at all "stable" times, the periods
before and after the invocation of a member function on the object/class.

Java — An industry-standard object-oriented devel opment language that iswell-suited for developing
applications for the Internet and applications that must operate on awide variety of computing platforms.

javadoc — A utility included in the JDK that processes a Java source code file and produces an external
document, in HTML format, describing the contents of the source code file based on the documentation
commentsin the codefile.

JDK —Javadevelopment Kit.
Lazy initialization — A techniquein which afield isinitialized in its corresponding getter member function
thefirst timethat it isneeded. Lazy initialization is used when afield is not commonly needed and it either

requires alarge amount of memory to store or it needs to be read in from permanent storage.

Local variable— A variable that is defined within the scope of ablock, often amember function. The scope
of alocal variableisthe block in which it is defined.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 60

Master test/quality assurance(QA) plan —A document that describes your testing and quality assurance
policies and procedures, as well asthe detailed test plans for each portion of your application.

Member Function — A piece of executable code that is associated with a class, or the instances of aclass.
Think of amember function as the object-oriented equivalent of afunction.

Member function signature — See signature.
Method testing — The act of ensuring that amember function (method) performs as defined.

Modding pattern — A pattern depicting a solution, typically in the form of a class model, to acommon
modeling problem.

Name hiding — Thisrefersto the practice of using the same, or at least similar, namefor a
field/variable/argument as for one of higher scope. The most common abuse of name hiding isto name a
local variable the same as an instance field. Name hiding should be avoided as it makes your code harder to
understand and prone to bugs.

Overload — A member function is said to be overloaded when it is defined more than once in the same class
(or in asubclass), the only difference being the signature of each definition.

Override — A member function is said to be overridden when it is redefined in a subclass and it has the same
signature as the original definition.

Package — A collection of related classes.
Paragraphing — A technique where you indent the code within the scope of a code block by one unit,
usually a horizontal tab, so asto distinguish it from the code outside of the code block. Paragraphing helps

to increase the readability of your code.

Parameter — An argument passed to amember function. A parameter may be a defined type, such asa
string or an int, or an object.

Pattern — The description of ageneral solution to acommon problem or issue from which a detailed solution
to a specific problem may be determined. Software devel opment patterns comein many flavors, including
but not limited to analysis patterns, design patterns, and process patterns.

Postcondition — A property or assertion that will be true after amember function is finished running.

Precondition — A constraint under which amember function will function properly.

Process pattern — A pattern that describes a proven, successful approach and/or series of actionsfor
developing software.

Property — Seefield.

Quality assurance (QA) — The process of ensuring that the efforts of a project meet or exceed the standards
expected of them.

Setter — An accessor member function that setsthe value of afield.

Signature — The combination of the type of parameters, if any, and their order that must be passed to a
member function. Also called the member function signature.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 61

Single-line comments — A Javacomment format, // ... , adopted from the C/C++ language that is commonly
used for the internal member function documentation of businesslogic.

Tags— A convention for marking specified sections of documentation comments that will be processed by
javadoc to produce professional-looking comments. Examples of tagsinclude @see and @author.

Test harness— A collection of member functions for testing your code
UML — Unified modeling language, an industry standard modeling notation.

Visibility — A technique that is used to indicate the level of encapsulation of aclass, member function, or
field. The keywords public, protected, and private can be used to define visibility.

Whitespace — Blank lines, spaces, and tabs added to your code to increase its readability.

Widget — See component.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 62

References and Suggested Reading

Ambler, SW. (19984). Building Object Applications That Work: Your Step-By-Step Handbook for
Devel oping Robust Systems with Object Technology. New Y ork: Cambridge University Press.

Ambler, SW. (1998b). Process Patterns. Building Large-Scale Systems Using Object Technology. New
Y ork: Cambridge University Press.

Ambler, SW. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New Y ork: Cambridge University Press.

Ambler, SW. (20008). The Unified Process Inception Phase. Gilroy, CA: R&D Books.
Ambler, SW. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: R&D Books.
Ambler, SW. (2000c). The Unified Process Construction Phase. Gilroy, CA: R&D Books.

Ambler, SW. (2000d). The Object Primer 2™ Edition: The Application Developer’s Guide to Object
Orientation. New Y ork: Cambridge University Press.

Arnold, K. & Gosling, J. (1998). The Java Programming Language 2™ Edition. Reading, MA: Addison
Wesley Longman Inc.

Campione, M and Walrath, K (1998). The Java Tutorial Second Edition: Object-Oriented Programming for
the Internet. Reading, MA: Addison Wesley Longman Inc.

Chan, P. and Lee, R. (1997). The Java Class Libraries. An Annotated Reference. Reading, MA: Addison
Wesley Longman Inc.

Coad, P. and Mayfield, M. (1997). Java Design: Building Better Apps & Applets. Upper Saddle River, NJ.
Prentice Hall Inc.

DeSoto, A. (1997). Using the Beans Devel opment Kit 1.0 February 1997: A Tutorial. Sun Microsystems.

Godling, J., Joy, B., Steele, G. (1996). The Java Language Specification. Reading, MA: Addison Wesley
Longman Inc.

Grand, M. (1997). Java Language Reference. Sebastopol, CA: O'Reilly & Associates, Inc.
Heller, P. and Roberts, S. (1997). Java 1.1 Developer’ s Handbook. San Francisco: Sybex Inc.
Kanerva, J. (1997). The Java FAQ. Reading, MA: Addison Wesley Longman Inc.

Koenig, A. (1997). The Importance —and Hazards — of Performance Measurement. New York: SIGS
Publications, Journal of Object-Oriented Programming, January, 1997, 9(8), pp. 58-60.

Laffra, C. (1997). Advanced Java: Idioms, Pitfalls, Styles and Programming Tips Upper Saddle River, NJ:
Prentice Hall Inc.

Langr, J. (1999). Essential Java Style: Patterns for |mplementation. Upper Saddle River, NJ: Prentice Hall
Inc.

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 63

Larman, C. & Guthrie, R. (1999). Java 2 Performance and |diom Guide. Upper Saddle River, NJ: Prentice Hall
Inc.

Leg, D. (1996). Draft Java Coding Standard. http://g.oswego.edu/dl/html/javaCodingStd.html

Leg, D. (1997). Concurrent Programming in Java: Design Principles and Patterns. Reading, MA: Addison
Wesley Longman Inc.

McConnéll, S. (1993). Code Complete — A Practical Handbook of Software Construction. Redmond, WA:
Microsoft Press.

McConnell, S. (1996). Rapid Development: Taming Wild Software Schedules. Redmond, WA: Microsoft
Press.

Meyer, B. (1988). Object-Oriented Software Construction. Upper Saddle River, NJ. Prentice Hall Inc.

Meyer, B. (1997). Object-Oriented Software Construction, Second Edition. Upper Saddle River, NJ:
Prentice-Hall PTR.

Nagler, J. (1995). Coding Style and Good Computing Practices.
http://wizard.ucr.edu/~nagler/coding_style.html

NPS (1996). Java Style Guide. United States Naval Postgraduate School.
http://dubhe.cc.nps.navy.mil/~java/course/styleguide.html

Niemeyer, P. and Peck, J. (1996). Exploring Java. Sebastopol, CA: O'Reilly & Associates, Inc.
Sandvik, K. (1996). Java Coding Style Guidelines. http://reality.sgi.com/sandvik/JavaGuidelines.html
Sun Microsystems (1996). javadoc — The Java APl Documentation Generator. Sun Microsystems.

Sun Microsystems (1997). 100% Pure Java Cookbook for Java Devel opers — Rules and Hints for
Maximizing the Portability of Java Programs. Sun Microsystems.

Warren, N. & Bishop, P. (1999). Javain Practice: Designh Styles and Idioms for Effective Java. Reading,
MA: Addison Wesley Longman Inc.

Vanhelsuwe, L. (1997). Mastering Java Beans. San Francisco: Sybex Inc.

Vermeulen, A., Ambler, SW., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J., & Thompson, P. (2000). The
Elements of Java Style. New Y ork: Cambridge University Press.

Vision 2000 CCS Package and Application Team (1996). Coding Standardsfor C, C++, and Java.
http://v2ma09.gsfc.nasa.gov/coding_standards.html

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 64

12.About the Author

Scott W. Ambler is a Software Process Mentor living in Newmarket, Ontario, 45 km north of Toronto,
Canadaand is President of Ronin International (www.ronin-intl.comm) aconsulting firm specializing in object-
oriented architecture, software process, and Enterprise JavaBeans (EJB) development. He hasworked with
OO0 technology since 1990 in various roles. Business Architect, System Analyst, System Designer, Process
Mentor, Lead Modeler, Smalltalk Programmer, Java Programmer, and C++ Programmer. He has aso been
active in education and training as both aformal trainer and as an object mentor.

Scott has a Master of Information Science and a Bachelor of Computer Science from the University of
Toronto. Heisthe author of the best-selling books The Object Primer, Building Object Applications That
Work, Process Patterns and More Process Patternsand co-author of The Elements of Java Style, al of
which are published by Cambridge University Press (www.cup.org). Scott isalso editor of The Unified
Process Series from R& D Books (www.rdbooks.com) to be published in 2000. Scott is a contributing editor
and columnist with Software Development (http://www.sdmagazine.con) and writes columns for Computing
Canada (http://www.plesman.com).

He can be reached viae-mail at:
scott@ambysoft.com
scott.ambler@ronin-intl.com

Visit his personal web site:
http://www.AmbySoft.com

Visit his corporate web site:
http://www.ronin-intl.com

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 65

13.Index

@

@AULNON T8Gvveveeeeeereereee s
@concurrency tag (proposed)
@dePrecated tagcveereeerererreeeeneeeesereereeereens
@exampletag (Proposed)ccoverereeeereeerneeenens

@exception tag

1

100% pure
AEFINITION . 62

A
Abbreviation

Accessor member function
advantages and disadvantages.............cce.... 29
CONStaNt JELLEY'S ...vvvveeiecee e 25
definition

setter member functions....

VISIDHTEY oo
Acronym

naming convention............
Ambler's Law of Standards...
Analysis pattern..........c.oo......
Analysis patterns...................
Antipatterncooeeeeeevereneen
ANLIPALLEINS...c.ceeeeecer e
ATChItECIUre ...
Argument .
ASSEIIONS....cceeirirerie s ssseees
Attribute

and lazy initialiZationccooerneeneecneeennens 24

AEfINIION ... 62

AOCUMENEINGcurerierreeeireeeeese s 22

BT oo 23

getter member functions.........ccevveeneecnneecnnen 2

INITATZAEION ... 24

NAME NIdING......covirreerrecreee s 20

NaMiNg CONVENTIONS......c.ccureerreeerrieerrseenseeenns 17

SEULEL .. 23

setter member functions...........cccceeveeccciennae 2

VISIDHTTY oo 21
Author

(oo 01 = Tox 11 0o [T 68
B
Banner COMmENtS.........coccveeeeneieneceeeeeee e 3
) 62
Block

AEFINITION . 62
Book

Elements of Java Style........cccoovvecvenenee. 6,13, 37

Process Patterns.........ocoeeceveveececreneeeseeceenens 30, 47
Braces

AEFINITION . 62

documentation Ofccccceeeeceeeeeeeeenenas 13
C
Class................

definition

documentation conventions...........ccccceeeennee 37

NaminNg CONVENLIONS.........ccreeereeeerieerrieeeneeennns 36
ClaSSteStING.....covveeeiererirerireeirere e 62
Clean CodE........ooomereeeeecteeeeeeeee e
COUE LAY ..ot
Code history
C0ode iNSPECLIONS.......oviererireeerreeerreee e 50
Coding standards

ClASSES ...ttt en 36

COMPIELTON UNITS....converieeeeeeiireeereeeeeeeeens 14

for local variables........cooveeeeeeeeeeeeeeeeee 31

for member fuNCLIoNS..........cccveeeeecveeeeereeeeee, 7

importance of

INEEITACESocvceeeeeeeeeeeee et

packages.........

PAAMELENSvovreerereeereeeseseressesssessesessssesssesnnes

using them effectivelyccccovencncneecnne 50
Collections

accessor member functions..........ccccceeeecenenee 27
Comments

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 66

DaNNEr StYIcveeeecceecce s 3

in member fuNCtionS..........cccovveeeerereseeensenseeens 9

1§77 0150) FE S 4
Compilation unit

coding standards..........cccoeveveenrnereeenneneneennnns 44

AEfiNItioN ..o 62

documentation conventions..........c.cccoeeeeennn. 44

naming conventions
Complex COE......uvrrrrreeriereresee e
Component

AEfiNItioN ..o

naming conventions
Component design.........cccecvvereeens
CONCUITENCY ... sssssens

and setter member functions..........ccccoeveene. 29

documentation of

notifyAll ...,
Constant getter.........

AEfiNItioN ..o
Constants

Naming CONVENLIONS........ccccevuvereeerereeeesresenenes 19
Constructor

AEfiNItioN ..o 62
Containment

AEfiNItioN ..o
Control structures
L00]0)Y/ ¢ Lo | o] SRR
Corporate QUIdEINES......c.cevvveereereresererese e 55
Coupling

and accessors.......

and inheritance
C-style comments

AEfiNItioN ..o

Default VISIDILY ... 9

Designfirst................

Design pattern

Design patterns

Destructor
AEfiNItioN ...

Develop in small steps.

Distributed design

OCIELS....oeecerre e

Documentation

Of COMPIEX COUE......corvrererirrrerrr e
of local variablesccoceeeeececcceeeeenas
of member functions
of processing Order..........c.covveeevereeeeveneeseennnns

OVENVIBW....ovevereieeetete ettt se s b sese s sesenes

compilation units
INErfaces......cocveeeureeneneenenas

Encapsulation

and accessor member functions...................... 29
End of line comments
Endline comment..........ccccovveveeenenecienienes
Endline comments...................
English descriptors.................
Example source code...............
Exception handling.......c.ccceeevvevcceneneesneeeenens
EXception OhjeCtS ...
Extreme Programming..........cccoeveeeenneneesreseseesnnns 13

finalize() member function
definition

Fragile base class problem
Friendly visibility.................. See package visibility
Full Lifecycle Object-Oriented Testing......... 13,49

G

Garbage collection
AEfiNITION ... 63

Getter member fUNCLIONcccccvereeerrerecerenas 2
advantages and disadvantages..........c.ccceeunne 29
and lazy initialization
definition ...
fOr CONSLANS......c.ocoererereceree e
naming conventions

H

HTML

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 67

OISttt 52
Indentingccccooveeeevrececreneeneen, See paragraphing
Inheritance

Toco 11 o] 1T oo SR 29
Inline comments

AEfINITION ..

disadvantagesccoeveveeveverenerese s
Interface......cccoeeveneee

definition

documentation convention

Naming CONVENLIONS........cccocvuvreernereseesrerenens
Invariant

AEfINITION ..t

documentation of

J

Java

Lazy initigization
definition................
documentation

Local variable
coding standards
AEClAiNg...cccverecrrereere s
definition ...
documentation of
documenting........cveeveeeereenenenens

LONG NAMES........ociiicririice s

L OOP COUNLEYS.......cooeceireccriren s

M

Maintenance
Master test/QA Plan........cevrerinerrneeeereeenneeenens 64
Member Function

coding standards..........ccoevvereereneneenerenseeeenens 7
AEfINITION .. 64

SELLEN .ttt 22
VISIDHTTY oo 9
Member Function signature.............. See signature

Modeling pattern.......ccvveeeevvereessessereseseeeeens 64
Multi-line StatEMENES........ccuveeereeeece e 14
Mutator.....See Setter member function. See setter

N

Namehidingcccovvevrereneeersecessee s 20
AEfINITION ..ot 64
Naming conventions
accessor member functions..........cccceveecvenene, 23

compilation units
components
CONSLANES...ouverereeeereeeereereenas

exception ObJECLS ... 32
for parameters.......cooceveeeeievence e 4
getter member functions..........cccceeeceveeenee 7,23
hungarian notationccccovveeeevereccereseneens
INErfaces......coocveeeenevreneenenas

local Variables.......c.cvvneerencereeneeree s
|OOP COUNLErS.....ooveecterecc e
member functions
OVEIVIBW ...ttt

O

Object databases.........cccceveveeeenereieeeereseeesenns 37
Object-Oriented Software Process..........ccccvunee 13

Optimization

and portability ...

factors ...

leave to end
Order of operations
Overload

AEFINIION . 64
Override

AEFINIION . 64
P
Package.......ccovvvevrirsss s 42

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 68

AEfINITION ..o 64
documentation conventions...........cccceevevennes 42
naming conventions
Package ViSibility.......ccocvveeensesccnneseresenens
Paragraphing.......ccccveeereneesensesssssesseseseseeseens
AEfINITION ..o
Parameter
definition

Parameters.................
Pattern........ccceveeee.
Patterns.......cccoieeeceieees e
Plan
master test/QA plan.........ccccevveeeevereeeverenenns 64
Portability
and OptiMiZatioN........ccveeverereerereee e 47
Postcondition
AEfINITION ..o 64
documentation Ofcccceeeeceeeeerereeenenas 10
Precondition
AEfINITION ..o 65
documentation Ofcccceeeeeeeeeerereeenenas 10
Prime DireCtiVe. ..o 1
Private visibility
Process patterncocveeevnreenerseeseseseeeens
Process Patterns Resource Page............cccceveneee 52

Processing order

documentation of
Property ...
Protected ViSiDilitycccooeevevvenccnreeeerese e
Public interface

Of @CIBSS....cccccectcee e
Public visibility
Punch cards........cccovvvevvresscsssee s
Punctuation

multi-line statements.........ccoeeeeevereeevenereerereenens 14

Q

Quality aSSUFaNCE........cceeueveurererreeneressesresessessenens 50
Quality assurance (QA)......covvvererereerrereseersenens 65

R

Relational databases...........ccceveeeeeeeeieeseeieieenns 37
S

Scott Ambler
(o001 = od 11 oo PSSR
Setter member fuNCLiON.........occcereveeeerereeereenes
advantages and disadvantages
AEfiNITION ...
Naming CONVENLIONS........ccccveenreeenrnrnensnnnns

ShOTt fOMMS .. 2,57
Signature
EfINITION ..o 65
Single letter NAMEScccccvevereceerereee s 31
Single-1ine COMMENLS.......covveeernererseereseseeeesenens 4
EfINITION ..o 65
USBIJE. .. veieereeereeresiesese et see e sesse e e sesseeenns 11
Standard

T
TGSt
definition
proposed
Test harnesses
Test INTheLarge....ovveeeneveeeresesesesenens
Test INnThe Small......eeeeieeeeceeeeee,
LIS (] Lo [
classtesting
method testing........cccceuuenee.
Thirty-second rul€.........ccveeeeevveceereseeeseseeens
Tips
accessto attribUtES......cccvcvcveveveeecee e
beware endline comments
definethe public interfacefirst..........coocuee.. 40
define your prioritiescccceevevecceveneneennn, 47
document closing braces.......cccoveeeevevcceenne, 13
set component naming standards................... 19
use interfaces for parameter types..........oo...... 35
Traceability....cooveeerereeee e 49
TYPE SAFELY vttt 6
U
UML ottt nes 65
UNGEISCOTES.......ceeeeeeeerrireeeetsiseeeeesesesssessssesessseens 18
Unified Modeling Language..........c.ccccccevureneeenne. 13
UNified ProCESS........coeeeeviveeeeireceeeseseeseeseseesessseeens 13
Users
working closely With.........cccooceevecccinecicnnn, 51
\
Visihility
AEfINItION ... 65
of accessor member functions......................... 28
Of attributes......c.ceeeee e 21
of member functions...........cccceeieeieecceeee. 9
w
WHILESPACE ..ottt 15
AEfINIION ... 65

Copyright 1998-2000 AmbySoft Inc.

www.AmbySoft.com/javaCodingStandar ds.pdf 69
Why X
documentation Ofccvenenecenienencinenas 31
WGGEL oo See component KP ettt 13

Copyright 1998-2000 AmbySoft Inc.

