TheDesign of a
Robust Persistence L ayer
For Relational Databases

Scott W. Ambler

Senior Consultant, Ambysoft Inc.
www.ambysoft.com/scottAmbler.html

Aiﬁﬁ&ggft_
N

Aan&h

http://www.ambysoft.com/downloads/per sistencel ayer .pdf

ThisVersion: June 21, 2005

Copyright 1997-2005 Scott W. Ambler

Table Of Contents

1. GOOD THINGSTO KNOW ABOUT THISPAPER ...t 1
2. KINDSOF PERSISTENCE LAYERS.. ... ittt st s et s bt s s s eaan e s s saan e s s sbanesanns 1
3. THE CLASSTYPE ARCHITECTURE. ..ottt et e e aaee s s eaae e e s ebaeeeenns 3
4, REQUIREMENTSFOR A PERSISTENCE LAYER ...ttt 5
5. THE DESIGN OF A PERSISTENCE LAYER ...ttt e et e et e e 8
51 OVERVIEW OF THE DESIGN ... cviiiiiteieieittie e s ettieeeeteeeeeaeeessestesesesteesssnssesssessesssassessssssesessssseessassesessnsens 8
51.1 The PersistentODJECt ClaSS......cccveiiiiiriiie s see ettt en e e e e e e sresrenns 9
51.2 The PersistentCriteria Class HIerarchy..........occccevereie s 10
513 L LS O U o g O = 12
514 The PersistentTranSaCtion ClaSScccuiiieeiieeiieie e eee st see st e e sae s sree s sseessreessseeesaeeas 13
515 The PerSiStENCEBIOKEr ClaSS......c.uiiiueiieiiiitie ettt eeee s rte st e st esee e sbe e s srae s sbeessaeessbeessneeesnees 14
5.1.6 The PersistenceMechanism Class HIerarChy..........ccocevvivreeeceesese s seseseseese e 15
5.1.7 TREMAP ClASSES....c.viiieitiitesteeeeee e ste e e sttt et e e s e te e s testesaeese e e eseessestessesseesenneensessessessenrens 16
5.1.8 The SglStatement Class HIEIarChyc.vcveeeeeiesese e sne 18

6. IMPLEMENTING THE PERSISTENCE LAYER ...ttt 19
6.1 BUY VERSUS BUILDotttiiiiii ettt ee ettt e e s et e et e s s s e e saabbaeeeasssesaabbabeeasesssabbabeeesesssesarrnneas 19
6.2 CONCURRENCY, OBJECTS, AND ROW LOCKINGuviiiiiiiiiitieeieee e esitereee e e s s seiaraeee e e s s sesasrseeessseesannns 19
6.3 DEVELOPMENT LANGUAGE |SSUES....cciiiiiiiiiiitiiii e s eeiitteet e e s s eesbbaes e e s s s e ssbbsseessssssssssassessesssssnssssens 20
6.4 A DEVELOPMENT SCHEDULEuuttiiiiiiiiiiitiieiee s s eesitbeeisasssssissbasssessssssssassesssessssbssssessssssssssssneesessns 21
T. DOING A DATA LOAD ettt ettt et e et e e s et e e s eeate e s s eaaeesssbbeeesesraeesssenessarrenean 21
7.1 TRADITIONAL DATA LOADING APPROACHEScctteeeeeteeeeeiteeeeeesteeeeesseessssseeessassesssesessssnsenessssseses 21
7.2 ARCHITECTED DATA LOADING ...c.cittiieeetei e e eteeeesetteeeeetee e s siaeessesstesesassessssnseeessassesssassesessnsenessssseeens 22
8. SUPPORTING THE PERSISTENCE LAYER. ...ttt sane s 23
LS T U VY N 25
10. ABOUT THE AUTHOR ..ttt ettt s e et e st e e s e bt e e s s ta e e s saaa e e s sbbeesseaeneessnnes 25
11. REFERENCES AND RECOMMENDED READINGoooiiiiieieeee et 26

Copyright 1997-2005 Scott W. Ambler

In this white paper | present an overview of the design of arobust persistence layer for object-oriented
applications. | have implemented all or portions of this design in several languages, in other words, this
design has been proven in practice.

=

Good Things to Know About This Paper

1. | assumethat you have read my white paper entitled Object/Relational Mapping 101 at
www.agil edata.org/essays/mappingObjects.html.
2. Throughout this paper | will use the Unified Modeling Language (UML) version to represent my
models.
Accessor methods, also known as getters and setters, are assumed for al attributes.
All attributes are private.
When | refer to an instance of class X, theimplication isthat I'm really referring to instances of class X
or any of its subclasses. This concept is called the Liskov Substitution Principle.
6. | do not present code for the persistence layer (and | will not distribute it), nor do | go into language-
specific issuesin the design. | will however discuss implementation issues at the end of the paper.

oakrw

2. Kinds of Persistence Layers
| would like to begin with a discussion of the common approaches to persistencethat Har d-coded SQL

are currently in practicetoday. Figure 1 presents the most common, and least in your business
palatable, approach to persistence in which Structured Query Language (SQL) code classesresultsin
is embedded in the source code of your classes. The advantage of this approach is codethat is

that it allows you to write code very quickly and is a viable approach for small difficult to
applications and/or prototypes. The disadvantageisthat it directly couples your maintain and

business classes with the schema of your relational database, implying that asimple extend.
change such as renaming a column or porting to another database resultsin arework
of your source code.

E SOL S
E) | RDEB

H B

Domain Classes

Figure1l. Hard-coding SQL in your domain/business classes.

Figure 2 presents aslightly better approach in which the SQL statements for your business Hardcoding
classes are encapsulated in one or more “data classes.” Once again, this approach is SQL in
suitable for prototypes and small systems of less than 40 to 50 business classes but it still separate data
results in a recompilation (of your data classes) when simple changes to the database are classes or
made. Examples of this approach include developing stored proceduresin the databaseto stored
represent objects (replacing the data classes of Figure 2) and Enterprise JavaBean (EJB)'s proceduresis
entity bean strategy. The best thing that can be said about this approach isthat you haveat only slightly
least encapsulated the source code that handles the hard-coded interactions in one place, better.

the data classes.

Copyright 1997-2005 Scott W. Ambler

EE EE i
= E—FRDB

H B H

Domain Classes Data Classes

Figure 2. Creating data classes corresponding to domain/business classes.

Figure 3 presents the approach that will be taken in this paper, that of arobust persistence layer that maps
objects to persistence mechanisms (in this case relational databases) in such a manner that simple changes
to the relational schema do not affect your object-oriented code. The advantage of this approach is that
your application programmers do not need to know athing about the schema of the relational database, in
fact, they don’t even need to know that their objects are being stored in arelational database. This approach
allows your organization to develop large-scale, mission critical applications. The disadvantage is that
there is a performance impact to your applications, aminor oneif you build the layer well, but thereis till
an impact.

E Robust SQL S
E sy Persistence e = RDE
Layer

5 B

Domain Classes

Figure 3. A robust persistence layer.

To understand our approach better, you must first understand the need for layering your application.

Copyright 1997-2005 Scott W. Ambler

3. The Class-Type Architecture

Figure 4 shows a class-type architecture (Ambler, 1998a; Ambler, 1998b, Ambler,
2004) that your programmers should follow when coding their applications. The class-
type architecture is based on the Layer pattern (Buschmann, Meunier, Rohnert,
Sommerlad, Stal, 1996), the basic idea that a class within a given layer may interact
with other classesin that layer or with classesin an adjacent layer. By layering your
source code in this manner you make it easier to maintain and to enhance because the
coupling within your application is greatly reduced.

User Interface Classes 3

z

Controller/
Process Classes

System
% Classes

Business/Domain Classes

<z

Persistence Classes

b

Persistent Store(s)

Figure 4. The class-type ar chitecture.

Layering your
application code
dramatically
increasesits
robustness.

Figure 4 indicates that users of your application interact directly with the user-interface layer of your
application. The user-interface layer is generally made up of classes that implement screens and reports.
User-interface classes are allowed to send messages to classes within the domain/business layer, the

Copyright 1997-2005 Scott W. Ambler

controller/process layer, and the system layer. The domain/business layer implements the domain/business
classes of your application, for example the business layer for a telecommunications company would
include classes such as Customer and PhoneCall. The controller/process layer, on the other hand,
implements business logic that involves collaborating with several business’domain classes or even other
controller/process classes such as the calculation of the charge of a phone call (which would interact with
instances of PhoneCall, Customer, and CallingPlan). The system layer implements classes that provide
access to operating system functionality such as printing and electronic mail. Domain/business classes are
allowed to send messages to classes within the system layer and the persistence layer. The persistence layer
encapsulates the behavior needed to store objects in persistence mechanisms such as object databases, files,
and relational databases.

By conforming to this class-type architecture the robustness of your source code increases dramatically due
to reduced coupling within your application. Figure 4 shows that for the user-interface layer to obtain
information it must interact with objects in the domain/business layer, which in turn interact with the
persistence layer to obtain the objects stored in your persistence mechanisms. Thisis an important feature
of the class-type architecture — by not allowing the user interface of your application to directly access
information stored in your persistence mechanism you effectively de-couple the user interface from the
persistence schema. The implication isthat you are now in a position to change the way that objects are
stored, perhaps you want to reorganize the tables of arelational database or port from the persistence
mechanism of one vendor to that of another, without having to rewrite your screens and reports.

Important heuristics:

1. User-interface classes should not directly accessyour persistence mechanisms. By
encapsulating the business logic of your application in domain/business classes and
controller/process classes, and not in your user interface, you are able to use that businesslogic in
more than one place. For example, you could develop a screen that displays the total produced by
an instance of the domain/business class Invoice (Ambler, 1998h) as well as areport that does the
same. If thelogic for calculating the total changes, perhaps complex discounting logic is added,
then you only need to update the code contained within Invoice and both the screen and report will
display the correct value. Had you implemented totaling logic in the user interface it would have
been in both the screen and the report and you would need to modify the source codein two
places, not just one.

2. Domain/business classes should not directly access your persistence mechanisms. Just like you
do not want to allow user-interface classes to directly access information contained in your
persistence mechanism, neither do you want to alow domain/business classes and
controller/processto do so. We'll seein the next section that a good persistence layer protects
your application code from persistence mechanism changes. If a database administrator decidesto
reorganize the schema of a persistence mechanism it does not make sense that you should have to
rewrite your source code to reflect those changes.

3. Theclasstypearchitectureisorthogonal to your hardware/network architecture. An
important thing to understand about the class-type architecture is that it is completely orthogonal to
your hardware/network architecture. Table 1 shows how the various class types would be
implemented on common hardware/network architectures. For example, we see that with the thin-
client approach to client/server computing that user-interface and system classes are implemented
on the client and that domain/business, persistence, and system classes are implemented on the
server. Because system classes wrap access to network communication protocols you are
guaranteed that some system classes will reside on each computer.

Copyright 1997-2005 Scott W. Ambler

Stand Thin- Distributed

Class Type Alone Client Fat-Client | n-Tier Objects

User interface Client Client Client Client Client

Controller/process | Client Server Client Application Do not care
server

Domain/business Client Server Client Application Do not care
server

Persistence Client Server Server Database server | Do not care

System Client All machines | All machines | All machines All machines

Table 1. Deployment strategiesfor classtypesfor various hardwar e/network architectures.

4. Requirements For a Persistence Layer

| have always been afirm believer that the first thing you should do when devel oping software is define the
requirements for it. The requirements presented here (Ambler, 1998d) reflect my experiences over the years
building and using persistence layers. | first started working with the object paradigm in 1991, and since
then | have developed systems in C++, Smalltalk, and Java for the financial, outsourcing, military, and
telecommunications industries. Some of these projects were small, single-person efforts and some involved
several hundred developers. Some were transaction-processing intensive whereas others dealt with very
complex domains. The short story is that these requirements reflect my experiences on a diverse range of
projects.

A persistence layer encapsulates the behavior needed to make objects persistent, in other words to read,

write, and delete objects to/from permanent storage. A robust persistence layer should support:

1. Several types of persistence mechanism. A persistence mechanism is any technology that can be
used to permanently store objects for later update, retrieval, and/or deletion. Possible persistence
mechanismsinclude flat files, relational databases, object-relational databases, hierarchical databases,
network databases, and objectbases. In this paper | will concentrate on the relational aspects of a
persistence layer.

2. Full encapsulation of the persistence mechanism(s). Ideally you should only have to send the
messages save, delete, and retrieve to an object to save it, delete it, or retrieve it respectively. That's
it, the persistence layer takes care of the rest. Furthermore, except for well-justified exceptions, you
shouldn’t have to write any special persistence code other than that of the persistence layer itself.

3. Multi-object actions. Because it is common to retrieve several objects at once, perhaps for areport or
as the result of a customized search, arobust persistence layer must be able to support the retrieval of
many objects simultaneously. The same can be said of deleting objects from the persistence
mechanism that meet specific criteria.

4. Transactions. Related to requirement #3 is the support for transactions, a collection of actionson
several objects. A transaction could be made up of any combination of saving, retrieving, and/or
deleting of objects. Transactions may be flat, an “all-or-nothing” approach where al the actions must
either succeed or be rolled back (canceled), or they may be nested, an approach where atransaction is
made up of other transactions which are committed and not rolled back if the large transaction fails.
Transactions may also be short-lived, running in thousandths of a second, or long-lived, taking hours,
days, weeks, or even months to complete.

5. Extensibility. You should be able to add new classesto your object applications and be able to change
persistence mechanisms easily (you can count on at least upgrading your persistence mechanism over

Copyright 1997-2005 Scott W. Ambler

10.

11.

12.

13.

time, if not port to one from a different vendor). In other words your persistence layer must be flexible
enough to allow your application programmers and persistence mechanism administrators to each do
what they need to do.

Object identifiers. An object identifier (Ambler, 1998c), or OID for short, is an attribute, typically a
number, that uniquely identifies an object. OIDs are the object-oriented equivalent of keys from
relational theory, columns that uniquely identify arow within atable.

Cursors. A persistence layer that supports the ahility to retrieve many objects with a single command
should also support the ability to retrieve more than just objects. The issue isone of efficiency: Do you
really want to allow users to retrieve every single person object stored in your persistence mechanism,
perhaps millions, all at once? Of course not. An interesting concept from the relational world isthat of
acursor. A cursor isalogical connection to the persistence mechanism from which you can retrieve
objects using a controlled approach, usually several at atime. Thisis often more efficient than
returning hundreds or even thousands of objects all at once because the user many not need all of the
objectsimmediately (perhaps they are scrolling through alist).

Proxies. A complementary approach to cursorsisthat of a“proxy.” A proxy isan object that
represents another object but does not incur the same overhead as the object that it represents. A proxy
contains enough information for both the computer and the user to identify it and no more. For
example, aproxy for a person object would contain its OID so that the application can identify it and
the first name, last name, and middle initial so that the user could recognize who the proxy object
represents. Proxies are commonly used when the results of a query are to be displayed in alist, from
which the user will select only one or two. When the user selects the proxy object from the list the real
object is retrieved automatically from the persistence mechanism, an object which is much larger than
the proxy. For example, the full person object may include an address and a picture of the person. By
using proxies you don’t need to bring all of thisinformation across the network for every person in the
list, only the information that the users actually want.

Records. The vast majority of reporting tools available in the industry today expect to take collections
of database records as input, not collections of objects. If your organization is using such atool for
creating reports within an object-oriented application your persistence layer should support the ability
to simply return records as the result of retrieval requestsin order to avoid the overhead of converting
the database records to objects and then back to records.

Multiple architectures. As organizations move from centralized mainframe architectures to 2-tier
client/server architectures to n-tier architectures to distributed objects your persistence layer should be
able to support these various approaches. The point to be made is that you must assume that at some
point your persistence layer will need to exist in arange of potentially complex environments.

Various database ver sions and/or vendors. Upgrades happen, as do ports to other persistence
mechanisms. A persistence layer should support the ability to easily change persistence mechanisms
without affecting the applications that access them, therefore a wide variety of database versions and
vendors should be supported by the persistence layer.

Multiple connections. Most organizations have more than one persistence mechanism, often from
different vendors, that need to be accessed by a single object application. Theimplication isthat a
persistence layer should be able to support multiple, simultaneous connections to each applicable
persistence mechanism. Even something as simple as copying an object from one persistence
mechanism to another, perhaps from a centralized relational database to alocal relational database,
requires at least two simultaneous connections, one to each database.

Native and non-native drivers. There are several different strategies for accessing arelational
database, and a good persistence layer will support the most common ones. Connection strategies

Copyright 1997-2005 Scott W. Ambler

include using Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and native
drivers supplied by the database vendor and/or athird party vendor.

14. Structured query language (SQL) queries. Writing SQL queriesin your object-oriented codeisa
flagrant violation of encapsulation — you’ ve coupled your application directly to the database schema.
However, for performance reasons you sometimes need to do so. Hard-coded SQL in your code should
be the exception, not the norm, an exception that should be well-justified before being alowed to
occur. Anyway, your persistence layer will need to support the ability to directly submit SQL codeto a
relational database.

Persistence layers should allow application developers to concentrate on what they do best, develop
applications, without having to worry about how their objects will be stored. Furthermore, persistence
layers should also allow database administrators (DBAS) to do what they do best, administer databases,
without having to worry about accidentally introducing bugsinto existing applications. With awell-built
persistence layer DBAS should be able to move tables, rename tables, rename columns, and reorganize
tables without affecting the applications that access them. Nirvana? You bet. My experienceisthat it is
possible to build persistence layers that fulfill these requirements, in fact the design is presented below.

Copyright 1997-2005 Scott W. Ambler

5. The Design of a Persistence Layer

In this section | will present the design of arobust persistence layer. In alater section | will discuss the
implementation issues associated with this design.

5.1 Overview of the Design

Figure 5 presents a high-level design (Ambler, 1998b) of arobust persistence layer and Table 2 describes
each classin the figure. Aninteresting feature of the design is that an application programmer only needs to
know about the following classes to make their objects persistent: Per sistentObject, the Per sistentCriteria
class hierarchy, PersistentTransaction, and Cursor. The other classes are not directly accessed by
application development code but will still need to be devel oped and maintained to support the “ public”
classes.

SqlStatement {abstract}
created from
tComponents : Coll
1.0 [+puildForObject()
+buildForCriteria()
+asString()
0.1 1
maps $
Per sistentObject {abstract} 1 ClassMap
P Bool -name : String
-IsProxy : Boolean
-isP : Boolean +getinsertSqlFor()
o.n : DateTime +getDeleteSql For()
+save() +getUpdateSqlFor()
+retrieve() FgetSdeatSqlFor) |7
+delete()
Cursor
1.1
- 0.n PersistentCriteria {abstract} Per sistenceBroker
-size : Integer pmm by uses
+n®<t0b]qis() credtes 11 -areSubclassesincluded : Boolean -$singlelnstance : Object Per sitenceM echani abstract
+n€><::0)(§) forClass : Class -connections : Collection ersistenceM echanism {abstract}
+nextRow: -
. . +addSelectX XX () processed by |+saveObject()
+previousObjects() +addOrCriteria() ——————>l+retrieveObject() 1.1 -connection : Connection
+previousProxies() +perform() 1.1 +dedeteObject() -name : String
+previousRows() 0.n processCriteria() connectsto0.n [+$open()
~$defauitSize() +processTransaction() :gpa‘l()
+processSal () i socsme() 0
L JPersistentTransaction| 11 -connectTo()
.~ |-disconnectFrom()
tasks : Collection processed by [-retrieveClassMaps()
+processTransaction()
+retry()
+addTransaction() b
+addSaveObject()
+addRetrieveObject()
+addDel eteObject()
+addCriteria()
-attempt() o.n
-rollback()
-commit()

Figure5. Overview of the design for a persistence layer.

Copyright 1997-2005 Scott W. Ambler

Class Description

ClassMap A collection of classes that encapsulate the behavior needed to map classes to
relational tables.

Cursor This class encapsulates the concept of a database cursor.

Per sistenceBroker Maintains connections to persistence mechanisms, such as relational databases

and flat files, and handles the communication between the object application
and the persistence mechanisms.

PersistentCriteria This class hierarchy encapsulates the behavior needed to retrieve, update, or
delete collections of objects based on defined criteria.

Per sistenceM echanism A class hierarchy that encapsulates the access to flat files, relational databases,
and object-relational databases. For relational databases this hierarchy wraps
complex class libraries, such as Microsoft's ODBC (open database
connectivity) or Java' s JDBC (Java database connectivity), protecting your
organization from changesto the class libraries.

Per sistentObj ect This class encapsulates the behavior needed to make single instances
persistent and is the class that business’‘domain classes inherit from to become
persistent.

PersistentTransaction This class encapsul ates the behavior needed to support transactions, both flat
and nested, in the persistence mechanisms.

SqlStatement This class hierarchy knows how to build insert, update, delete, and select SQL

(structured query language) statements based on information encapsulated by
ClassM ap objects.

Table 2. Theclassesand hierarchies of the persistence layer.

The classes represented in Figure 5 each represent cohesive concepts, in other words each class does one
thing and one thing well. Thisisafundamental of good design. PersistentObject encapsulates the
behavior needed to make a single object persistent whereas the PersistentCriteria class hierarchy
encapsulates the behaviors needed to work with collections of persistent objects. Furthermore, 1'd like to
point out that the design presented here represents my experiences building persistence layersin Java, C++,
and Smalltalk for several problem domains within several different industries. This design worksand is
proven in practice by awide range of applications.

5.1.1 The PersistentObject Class

Figure 6 shows the design of two classes, PersistentObject and OID. PersistentObject encapsulates the
behavior needed to make a single object persistent and is the class from which al classesin your
problem/business domain inherit from. For example, the business class Customer will either directly or
indirectly inherit from PersistentObject. The OID class encapsul ates the behavior needed for object IDs,
called persistent IDs in the CORBA (Common Object Request Broker) community, using the HIGH/LOW
approach for ensuring unique identifiers. Details of the HIGH/LOW OID are presented at
www.agiledata.org.

Copyright 1997-2005 Scott W. Ambler

10

PersistentObject {abstract}

-isProxy : Boolean oD

-isPersistent : Boolean F—
-timeStamp : DateTime 1.1
+save()
+retrieve()
+delete()

0.1

-highValue : Long
-lowValue : Integer

+value()

identifies

Figure 6. Thedesign of PersistentObject and OID.

Asyou can see, PersistentObject isfairly simple. It has three attributes, isProxy, isPersistent, and
timeStamp which respectively indicate whether or not an object isaproxy, if it wasretrieved from a
persistence mechanism, and the timeStamp assigned by the persistence mechanism for when it was last
accessed by your application. Proxy objects include only the minimal information needed for the system
and the user to identify the object, therefore they reduce network traffic as they are smaller than the full
objects. When the “real” object is needed the proxy is sent the retrieve() message which refreshes all of the
object’ s attributes. Proxies are used when the user is interested in a small subset of the objects that would
be the result of aretrieval, often the case for a search screen or simple list of objects. The attribute
isPersistent isimportant because an object needs to know if it already exists in the persistence mechanism
or if it was newly created, information that is used to determine if an insert or update SQL statement needs
to be generated when saving the object. The timeStamp attribute is used to support optimistic locking in
the persistence mechanism. When the object is read into memory itstimeStamp is updated in the
persistence mechanism. When the object is subsequently written back the timeStamp isfirst read in and
compared with theinitial value — if the value of timeStamp has changed then another user has worked with
the object and there is effectively a collision which needs to be rectified (typically viathe display of a
message to the user).

Per sistentObj ect implements three methods — save(), delete(), and retrieve() — messages which are sent to
objects to make them persistent. The implication is that application programmers don’t need to have any
knowledge of the persistence strategy to make objects persistent, instead they merely send objects messages
and they do theright thing. Thisiswhat encapsulation is all about.

PersistentObject potentially maintains a relationship to an instance of Ol D, which is done whenever object
IDs are used for the unique keys for objects in the persistence mechanism. Thisis optional because you
don’t always have the choice to use object IDs for keys, very often you are forced to map objects to alegacy
schema. The need to map to legacy schemasis an unfortunate reality in the object-oriented devel opment
world, something that we'll discuss later in this white paper we look at how the map classes are
implemented. Anyway, you can easily have Per sistentObj ect automatically assign object IDs to your
objects when they are created if you have control over your persistence schema.

5.1.2 The PersistentCriteria Class Hierarchy

Although Per sistentObj ect encapsulates the behavior needed to make single objects persistent, it is not
enough because we also need to work with collections of persistent objects. Thisiswhere the
PersistentCriteria class hierarchy of Figure 7 comesin — it supports the behavior needed to save, retrieve,
and delete several objects at once.

Copyright 1997-2005 Scott W. Ambler

11

PersistentCriteria {abstract}
SelectionCriteria {abstract}
0.n -areSubclasseslIncluded : Boolean
-attributeName : String -forClass : Class
-value : Object +addSelectX X X()
+asSql Clause() +addOrCriteria()
+perform()
XXXCriteria {abstract} RetrieveCriterial InsertCriteria UpdateCriteria
returnType : Type -attributeValues : Collectign
+asSql Clause() rasCursor() +markForDel etion() +perform()
+asProxies() +permanentlyDel ete() +addAttribute()
+asObj eczjsé()) 0..1| creates
0.1 +asRecor
Cursor I

creates crealesTO. 1

Figure7. The PersistentCriteria class hierarchy.

PersistentCriteria isan abstract class, one that captures behavior common to its subclasses but one that is
not directly instantiated, which allows you to define selection criteria that limits the scope to a small subset
of objects. The addSelect XXX () method of PersistentCriteria represents a collection of methods that take
two parameters, an attribute of a class and avalue, and create corresponding instances of subclasses of
SelectionCriteria. The SelectionCriteria class hierarchy encapsulates the behavior needed to compare a
single attribute to a given value. There isone subclass for each basic type of comparison (equal to, greater
than, less than, less than or equal to, and greater than or equal to). For example, the method
addSelectGreater Than() method creates an instance of Greater ThanCriteria, and addSelectEqual To()
creates an instance of EqualToCriteria.

The for Class attribute of PersistentCriteria indicates the type of objects being dealt with, perhaps
Employee or | nvoice objects, and the isSubclasses! ncluded attribute indicates whether or not the criteria
also applies to subclasses of for Class, effectively supporting inheritance polymorphism. The combination
of these two attributes and the addSelect X X X () methods are what makes it possible to define that you want
to work with instances of the Per son class and it subclasses where their first names begin with the letter * J
(through wild card support) that were born between June 14", 1966 and August 14™ 1967.

The class RetrieveCriteria supports the retrieval of zero or more objects, proxy objects, rows, or a cursor
because we want to be able to retrieve more than just objects: Proxies are needed to reduce network traffic,
rows are needed because many reporting class libraries want collections of rows (not real objects) as
parameters, and cursors allow you to deal with small subsets of the retrieval result set at atime increasing
the responsiveness of your application. The Cursor classwill be discussed later.

DeleteCriteria supports the deletion of several objects at once. This robust class supports both marking
objects as deleted, my preferred approach, and actually deleting of them (perhaps to clean up the database
and/or for archiving). To mark objects as deleted the instance of DeleteCriteria creates an instance of
UpdateCriteria and simply updates a deletionDateTime or isDeleted column within the appropriate
tables.

The class UpdateCriteria is used to update one or more attributes within a collection of classes

simultaneously. The perform() method basically creates an instance of RetrieveCriteria to obtain the
objects, loops through them to assign the new values to the attributes, and then sends the save() message to

Copyright 1997-2005 Scott W. Ambler

12

each object to write it back to the persistence mechanism. Y ou need to retrieve the objects so that you can
use the appropriate setter methods to update the attributes — the setter methods will ensure that the
applicable business rules are followed when the new values are set. Remember, objects encapsulate
business rules which are often not reflected in the database, therefore you cannot simply generate asingle
SQL statement to update all objects at once.

Thetypical life cycle of apersistent criteria object is to define zero or more selection criteriafor it and then
to have the object run itself (it submitsitself to the single instance of PersistenceBroker) viathe perform()
method. Instances of SelectionCriteria are related to one another within a single instance of
PersistentCriteria viathe use of “AND logic.” To support OR logic the or Criteria() method takes an
instance of PersistentCriteria as a parameter and effectively concatenates the two criteriatogether. Asyou
would guess, this makesit possible to generate very complex criteria objects.

The advantage of this class hierarchy is that it allows application programmers to retrieve, delete, and
update collections of objects stored within a persistence mechanism without having any knowledge of the
actual schema. Remember, the SelectionCriteria class deals with the attributes of objects, not with
columns of tables. This allows application programmers to build search screens, lists, and reports that
aren’'t coupled to the database schema, and to archive information within a persistence mechanism without
direct knowledge of its design. Once again, our persistence layer supports full encapsulation of the
persistence mechanism’'s schema.

5.1.3 The Cursor Class

Figure 8 shows the design of the Cursor class which encapsulates the basic functionality of a database
cursor. Cursors allow you to retrieve subsets of information from your persistence mechanism at asingle
time. Thisisimportant because asingle retrieve, supported by the RetrieveCriteria class described last
month, may result in hundreds or thousands of objects coming across the network — by using a cursor you
can retrieve this result set in small portionsone a atime. Cursor objects allow you to traverse forward and
backward in the result set of aretrieval (most databases support forward traversal but may not support
reverse traversal due to server buffering issues), making it easy to support users scrolling through lists of
objects. The Cursor class also supports the ability to work with rows (records) from the database, proxy
objects, and full-fledged objects.

Cursor

-size : Integer
+nextObjects()
+nextProxies()
+nextRows()
+previousObjects(
+previousProxies()
+previousRows()
-$defaultSize()

Figure 8. The Cursor class.

Cursor has an instance attribute size, whose value is typically between one and fifty, which indicates the
maximum number of rows, objects, or proxies that will be brought back at asingletime. Asyou would
expect, the class/static method defaultSize() returns the default cursor size, which | normally set at one.
Note how a getter method for the default size is used, not a constant (static final for the Java programmers

Copyright 1997-2005 Scott W. Ambler

13

out there). By using a getter method to obtain the constant value | leave open the opportunity for
calculating the value, instead of just hardcoding it as a constant. | argue that the principle of information
hiding pertains to constants as well as variables, therefore | use getter methods for constants to make my
code more robust.

5.1.4 The PersistentTransaction Class

The fourth and final class that your application programmers will directly deal with —the others were
PersistentObject, PersistentCriteria, and Cursor —is PersistentTransaction, shownin Figure 9.
PersistentTransaction instances are made up of tasks to occur to single objects, such as saving, deleting,
and retrieving them, as well asinstances of PersistentCriteria and other PersistentTransaction objects.

PersistentTransaction

-tasks : Collection
+processT ransaction()
+retry()
+addTransaction()
+addSaveObject()
+addRetrieveObject()
+addDel eteObj ect()
+addCriteria()
-attempt()

-rollback()

-commit()

Figure 9. The PersistentTransaction class.

Thetypical life cycle of atransaction isto create it, add a series of tasks, send it the processTransaction()
message, and then either commit the transaction, rollback the transaction, or retry the transaction. You
would commit the transaction, make the tasks of the transaction permanent, only if the
processTransaction() method indicated that the transaction was successful. Otherwise, you would either
rollback the transaction, basically give up trying the transaction, or retry the transaction if it's possible that
locks in your persistence mechanism have been removed (making it possible to succefully run the
transaction). The ability to commit and rollback transactions isimportant — because transactions are atomic,
either the succeed or they fail — you must be able to either completely back out of the transaction by rolling
it back or completely finish the transaction by committing it.

Tasks are processed in the order that they are added to an instance of PersistentTransaction. If asingle
task fails, perhapsit is not possible to delete an indicated object, then processing stops at that task and the
processTransaction() method returns with afailure indication.

When a PersistentTransaction instance is added to another transaction, viainvoking the
addTransaction() method, it is considered to be nested within the parent transaction. Child transactions
can be successful, be committed, even when the parent transaction fails. When a nested transaction is
attempted, if it is successful it is automatically committed before the next task in thelist is attempted,
otherwise if it fails the parent transaction stops with a failure indication.

Copyright 1997-2005 Scott W. Ambler

14

An advanced version of this class would allow for non-persistence mechanism tasks to be included in a
transaction. For example, perhapsit’simportant to run atransaction only on days where the moon isfull,
therefore one of your transaction steps would be to send the message isFull() to an instance of the M oon
class, if isFull() returns true then the transaction continues, otherwise it fails.

5.1.5 The PersistenceBroker Class

In many ways the Per sistenceBroker class, show in Figure 10, isthe key to the persistence layer. This
class follows the Singleton design pattern in that there is only one instance of it in the object space of the
application. During run time Per sistenceBroker maintains connections to persistence mechanisms
(databases, files, ...) and manages interactions with them. Per sistenceBroker effectively actsasago
between for the classes Per sistentObject, PersistentCriteria, and Transaction asit is where instances of
these classes submit themselves to be processed. PersistenceBroker interacts with the SglStatement class
hierarchy, map classes, and Per sistenceM echanism class hierarchy.

Per sistenceBroker

-$singlelnstance : Object
-connections : Collection

+saveObject()
+retrieveObject()

+del eteObject()
+processCriteria()
+processTransaction()
+processSql ()
-connectTo()
-disconnectFrom()
-retrieveClassMaps()

Figure 10. The PersistenceBroker class.

When you start your application one of the initiation tasksis to have PersistenceBroker read in the
information needed to create instances of the map classes (ClassM ap, AttributeMap, ...) from your
persistence mechanism. PersistenceBroker then buffers the map classes in memory so they can be used to
map objects into the persistence mechanism.

An important feature of PersistenceBroker isthe processSql() method, which you can use to submit
hardcoded SQL (structured query language) statements to the persistence. Thisisacritical feature because
it allows you to embed SQL in your application code —when performanceis of critical importance you may
decide to override the save(), delete(), and/or retrieve() methods inherited from Per sistentObject and
submit SQL directly to your persistence mechanism. Although this always sounds like a good idea at the
time, it is often afutile effort for two reasons. first, the resulting increase in coupling between your
application and the persistence schema reduces the maintainability and extensibility of your application;
second, when you actually profile your application to discover where the processing istaking placeitis
often in your persistence mechanism, not in your persistence layer. The short story isthat to increase the
performance of your application your time is better spent tweaking the design of your persistence schema,
not your application code.

Copyright 1997-2005 Scott W. Ambler

15

5.1.6 The PersistenceMechanism Class Hierarchy

The Per sistenceM echanism class hierarchy, shown in Figure 11, encapsul ates the behaviors of the various
kinds of persistence mechanisms. Although support for object-relational databases and filesis shown here,
WEe' re concentrating on mapping objects to relational databases. Flat filesin general provide less
functionality than relational databases, basically the sequential reading and writing of data, whereas object-
relational databases provide more.

The class method (static method in Java and C++) open() is effectively a constructor method that takes as a
parameter the name of a persistence mechanism to connect to, answering back the corresponding instance of
Per sistenceM echanism.

Per sistenceM echanism {abstract}

connection : Connection
name : String

+$open()
+open()
+close()
+isOpen()
Relational Database {abstract} FlatFile ObjectRelational
{abstract} Database
{abstract}

+processql()
+getClauseStringX X X()

i

Vendor ADatabase Vendor BDatabase
{abstract} {abstract}

Figure 11. The PersistenceM echanism class hierar chy.

The getClauseStringX XX () of RelationalDatabase represents a series of getter methods that return strings
representing a portion of a SQL statement clause (thisinformation is used by the Sql Statement class
hierarchy). Examples of XXX include: Delete, Select, Insert, Order By, Where, And, Or, Clause,
EqualTo, and Between. Often there will be two versions of each method, for example And really needs an
getClauseStringAndBegin() method that returnsthe string ‘AND(* and getClauseStringAndEnd() which
returnsthe string *)’ in order to build a complete AND clause within an SQL statement. These methods are
invoked by instances of the SglStatement class hierarchy so that they may take advantage of the unique
features of each kind of relational database.

Copyright 1997-2005 Scott W. Ambler

16

Relational Database supports the ANSI standard SQL clauses, whereas its subclasses will override the
appropriate methods to support their own unique extensionsto ANSI SQL. This class, and its subclasses,
wrap complex class libraries such as Microsoft’s ODBC (open database connectivity) or Java's JDBC (Java
database connectivity), protecting your organization from changes to the classlibraries. The method
processSQL () takes as input a string representing an SQL statement and returns either aresult set of zero or
more rows or an error indicating a problem. This method isinvoked only by PersistenceBroker, which
maintai ns connections to your persistence mechanisms, and not by your application code which knows
nothing about this class hierarchy (nor should it).

5.1.7 The Map Classes

Figure 12 presents the class diagram for the ClassM ap component, a collection of classes that encapsul ate
the behavior needed to map objects to persistence mechanisms. The design is geared toward mapping
objects to relational databases, although you can easily enhance it to support other persistence mechanisms
such asflat files and object-relational databases.

UniDirectional AssociationM ap

fo

-cardinality : Integer

-isMust : Boolean
-isSaveAutomatic : Boolean
-isDeleteAutomatic : Boolean
-isRetrieveAutomatic : Boolean

1.
1

2 implemented | 1..
by n
ClassMap ln" AttributeMap ColumnMap
1. maps
- subclas t
-name : String s -name : String n 01” -name : String
+getlnsertSql For() or;‘ +isProxy() 1 [isKeyColumn : Boolean
+getDeleteSglFor() | o +columnName() R
+getUpdateSqlFor()| 1 +asSql SaveValue() \
+getSelectSqlFor() | superclas 7 1.
S n
0.. | buffer
ny s ProxyAttributeM a TableM N DatabaseMap
SqiStatement p a v __
— <J-name : String
- : Stril -vendor : String
abstract name : String vend - Strir
{ : +isProxy() +fullyQualifiedName() : String -version : String

Figure 12. The ClassM ap component.

Let’s start at the ClassM ap class, instances of which encapsulate the behavior needed to map instances of a
given classto arelational database. If instances of the Customer class are persistent then there would be
ClassM ap object which maps Customer objects into the database. If instances of a class are not persistent,
for examples instances of the class RadioButton (a user interface widget), then there will not be an instance
of ClassMap for that class.

ClassM ap objects maintain a collection of AttributeM ap objects which may map an attribute to asingle
columnin arelational table. AttributeM ap objects map simple attributes such as strings and numbers that
are stored in your database, or are used to represent collections to support instances of the
UniDirectional AssociationM ap class (more on thisin aminute). AttributeM ap objects know what
ColumnM ap objects they are associated to, which in turn know their TableM ap and DatabaseM ap

Copyright 1997-2005 Scott W. Ambler

17

objects. Instances of these four classes are used to map an attribute of an object to atable column within a
relational database.

A ProxyAttributeM ap object is used to map a proxy attribute, which is an attribute that is needed to build
the proxy version of an object. Proxy objects have just enough information to identify the real object that it
represents, forgoing the values of attributes which require significant resources such as network bandwidth
and memory. The ProxyAttributeM ap classis needed to support the ability for PersistentCriteria
objects and Cur sor objects to automatically retrieve proxies from the database.

The class UniDirectional AssociationM ap encapsulates the behavior for maintaining a relationship
between two classes. When arelationship is bi-directional, for example a Student object needs to know the
courses that it takes and a Cour se object needs to know the students taking it, then you will need to
maintain a UniDir ectional AssociationM ap for each direction of the relationship. Y ou could attempt to
develop a BiDirectional AssociationM ap classif you wish, but when you consider the complexities of
doing so you'll recognize that using two instances of UniDirectional AssociationMap is much easier. The
map maintains a relationship between two classes, and includes knowledge of whether or not the second
class should be saved, deleted, or retrieved automatically when the first classis, effectively simulating
triggers in your OO application (removing the need to maintain them in your database if you wish to do so).

The implemented by association between UniDir ectional AssociationM ap and AttributeM ap revealsthe
most interesting portion of this component — sometimes AttributeM ap objects are used to represent a
collection attribute to maintain a one-to-many association. For example, because a student takes one or
more courses there is a one-to-many association from the Student classto the Course class. To maintain
this association in your object application the Student class would have an instance attribute called cour ses
which would be a collection of Course objects. Assuming the isRetrieveAutomatic attribute is set to true,
then when a Student object is retrieved all of the courses that the student takes would be retrieved and
references to them would be inserted into the collection automatically. Similar to defining triggersin
relational databases, you want to put alot of thought into the triggers that you define using the
isSaveAutomatic, isRetrieveAutomatic, and isDeleteAutomatic attributes of

UniDirectional AssociationM ap.

Why do you need these mapping classes? Simple, they are the key to encapsulating your persistence
mechanism schema from your object schema (and vice versa). If your persistence mechanism schema
changes, perhaps a table is renamed or reorganized, then the only change you need to make is to update the
map objects, which aswe'll see later are stored in your database. Similarly, if you refactor your application
classes then the persistence mechanism schema does not need to change, only the map objects. Naturaly, if
new features are added requiring new attributes and columns, then both schemas would change, along with
the maps, to reflect these changes.

For performance reasons instances of ClassM ap maintain a collection of SqlStatement objects, buffering
them to take advantage of common portions of each statement. For similar reasons, although | don’'t show
it, ClassM ap should also maintain a collection of Database M ap objects that SqlStatement objects use to
determine the proper subclass of RelationalDatabase, for example Oracle8, to obtain the specific string
portions to build themselves. Without this relationship the SglStatement objects need to traverse the

rel ationships between the map classes to get to the right subclass of RelationalDatabase.

There are two interesting lessons to be learned from the class diagram in Figure 12. First, isthe cardinality
of “2" used on the association between ClassM ap and UniDirectional AssociationM ap — | rarely indicate
amaximum cardinality on an association, but thisis one of the few times that a maximum is guaranteed to
hold (there will only ever be two classes involved in auni-directional association). The modeling of
maximums, or minimums for that matter, is generally a bad idea because they will often change, therefore
you don’t want to develop a design that is dependent on the maximum. Second, recursive relationships are
one of the few times that | use roles in an association — many people find recursive relationships confusing,

Copyright 1997-2005 Scott W. Ambler

18

such asthe one that ClassM ap has with itself, so you want to provide extrainformation to aid them in their
understanding.

5.1.8 The SqglStatement Class Hierarchy

Figure 13 presents the SglStatement class hierarchy which encapsulates the ability to create SELECT,
INSERT, UPDATE, and DELETE structured query language (SQL) statements. As you would expect, each
subclass knows how to build itself for a given object or instance of PersistentCriteria. For example,
SelectSglStatement objects will be created to retrieve asingle Customer object, viainvoking the
retrieve() method on the object, or by creating an instance of the class RetrieveCriteria, a subclass of
PersistentCriteria, and invoking the perform() method on it.

SglStatement {abstract}

-statementComponents : Collectipn
+buildForObject()
+buildForCiriteria()
+asString()

SelectSqlStatement

+buildForObject()

+buildForCriteria()

UpdateSqlStatement

+buildForObject()
+buildForCriteria()

DeleteSqlStatement

+buildForObject()
+buildForCriteria()

InsertSqlStatement

+buildForObject()
+buildForCriteria()

Figure 13. The SglStatement class hierar chy.

Aswe saw earlier the Relational Database class hierarchy encapsulates the specific flavor of SQL
supported by each database vendor/version (although SQL is a standard, every vendor supports its own
unigue extensions that we want to automatically use). Instances of SqlStatement collaborate with instances
of ClassM ap to determine the subclass of RelationalDatabase from which to retrieve the portions of SQL
clauses to build itself.

The attribute statementComponentsis a collection of strings that can be reused for the single objects of a

given class. For example, the attribute list of an INSERT statement does not change between instances of
the same class, nor does the INTO clause.

Copyright 1997-2005 Scott W. Ambler

19

6. Implementing The Persistence Layer

There are several issues that you need to be aware of with persistence layers if you wish to be successful.
These issues are:

? Buying versus building the persistence layer

? Concurrency, objects, and row locking

? Development language issues

? A potential development schedule

6.1 Buy Versus Build

Although this white paper is aimed at people who are building a persistence layer, the fact is that building
and maintaining a persistence layer isacomplex task. My adviceisthat you shouldn’t start the
development of a persistence layer it if you can’t finish through. This includes the maintenance and support
of the persistence layer onceitisin place.

If you decide that you either can’t or don’'t want to build a persistence layer A feasibility study
then you should consider purchasing once. In my third book, Process Patterns should look at the
(Ambler, 1998b), | go into detail about the concept of afeasibility study, which economic, technical,
looks at the economic, technical, and operational feasibility of something. The and operational
basic ideais that your persistence layer should pay for itself, should be possible feasibility of

to build/buy, and should be possible to be supported and maintained over time building/buying a
(asindicated previoudly). persistence layer.

The good news is that there are alot of good persistence products available on the market, and | have
provided links to some of them at http://www.ambysoft.com/persistencelayer.html to provide an initial
basis for your search. Also, | have started, at least at a high level, alist of requirementsfor you in this
document for your persistence layer. Thefirst thing that you need to do is flesh them out and then prioritize
them for your specific situation.

6.2 Concurrency, Objects, and Row Locking

For the sake of this white paper concurrency deals with the issues involved with allowing multiple people
simultaneous access to the same record in your relational database. Because it is possible, if you alow it,
for several users to access the same database records, effectively the same objects, you need to determine a
control strategy for allowing this. The control mechanism used by relational databasesislocking, andin
particular row locking. There are two main approaches to row locking: pessimistic and optimistic.

1. Pessimistic locking. An approach to concurrency in which an itemislocked in the persistence
mechanism for the entire time that it isin memory. For example, when a customer object is edited a
lock is placed on the object in the persistence mechanism, the object is brought into memory and
edited, and then eventually the object iswritten back to the persistence mechanism and the object is
unlocked. This approach guarantees that an item won’t be updated in the persistence mechanism while
the item isin memory, but at the same time is disallows others to work with it while someone el se does.
Pessimistic locking is ideal for batch jobs that need to ensure consistency in the data that they write.

2. Optimisticlocking. An approach to concurrency in which an item islocked in the persistence
mechanism only for the time that it is accessed in the persistence mechanism. For example, if a
customer object is edited alock is placed on it in the persistence mechanism for the time that it takes to
read it in memory and then it isimmediately removed. The object is edited and then when it needs to
be saved it islocked again, written out, then unlocked. This approach allows many people to work with
an object simultaneously, but also presents the opportunity for people to overwrite the work of others.
Optimistic locking is best for online processing.

Copyright 1997-2005 Scott W. Ambler

20

Y es, with optimistic locking you have an overhead of determining whether or not the record has been
updated by someone else when you go to save it. This can be accomplished viathe use of a common
timestamp field in all tables: When you read a record you read in the timestamp. When you go to write the
record you compare the timestamp in memory to the one in the database, if they are the same then you
update the record (including the timestamp to the current time). If they are different the someone else has
updated the record and you can’t overwrite it (therefore displaying a message to the user).

6.3 Development Language Issues

The design as presented in this paper requires something called reflection, the ability to work with objects
dynamically at run time. Reflection is needed to dynamically determine the signatures of, based on the meta
data contained in the map classes, getter and setter methods and then to invoke them appropriately.
Reflection is built into languages such as Smalltalk and Java (at least for JDK 1.1+) but not (yet) in C++.
Theresult isthat in C++ you need to code around the lack of reflection, typically by moving collections of
data between the business/‘domain layer and the persistence layer in a structured/named approach. Asyou
would expect, thisincreases the coupling between your object schema and your data schema, although still
provides you with some protection.

Copyright 1997-2005 Scott W. Ambler

21

6.4 A Development Schedule

If you intend to build a persistence layer, hereis one potential schedule that you may choose to follow:

Milestone Tasksto Perform

1. Implement basic ? Implement PersistentObject.
CRUD behavior. | 2 Implement connection management in Per sistenceBr oker .

? Implement map classes (at least the basics) with the meta data being read
from tables where the data is input manually.

? Implement basics of the SglStatement hierarchy for a single object.

? Implement the Per sistenceM echanism hierarchy for the database(s) that
need to be supported within your organization.

2. Implement support | ? Implement the UniDir ectional AssociationM ap class.
for Associations. | 2 The SglStatement hierarchy will need to be updated to reflect the additional
complexity of building SQL code to support associations.

3. Implement support | ? Implement the PersistentCriteria hierarchy, typicaly starting with
for RetrieveCriteria to support search screens and reports.

PersistentCriteria | 2 Update Per sistenceBroker to process PersistentCriteria objects.
4. Implement support | ? Add ProxyAttributeM ap.

for cursors, ? Add Cursor class.

proxies, and ? Add Record class (if your language doesn’t already support it).

records. ? Add Proxy class (if your language doesn’t already support it).

? Modify PersistenceBroker to hand back objects, rows, proxies, or records
when processing PersistentCriteria objects.

5. Implement an ? Seesection 8.

administration

application.
6. Implement ? Implement the Transaction class.

transactions. ? Modify PersistenceBroker.

| always suggest starting simple by supporting a single database, and then if needed support multiple
databases simultaneously.

Steps 2 through 6 could be done in any order depending on your priorities.

7. Doing a Data Load

In this section | will discuss the issues involved with loading data into your object-oriented application.
Dataloads are areality of system development: you need to convert alegacy database to a new version;
you need to load testing/devel opment objects from an external data source; or you need to perform regular
loads, potentially in real time, of data from non-OO and/or external systems. | begin by reviewing the
traditional loading techniques, and then present one that is sensible for OO applications.

7.1 Traditional Data Loading Approaches

The traditional approach to data loading, shown in Figure 14, is to write a program to read datain from the
source database, cleanse it, then writeit out to the target database. Cleansing may range from simple
normalization of data, to single field cleansing such as converting two-digit years to four-digit years, to
multi-field cleansing in which the value in one field implies the purpose of another field (yes, this would be

Copyright 1997-2005 Scott W. Ambler

22

considered incredibly bad design within the source data, but it is the norm in many legacy databases).
Referential integrity, the assurance that all references within arecord to other records do in fact refer to
existing records, is also coded in the data loading program.

D
Source | Data Target
Data Loader Data

Figure 14. Thetraditional approach to loading data.

There are several problems with this approach. First and foremost, the target datais no longer encapsul ated
—if the schema of your persistence mechanism changes then you will need to change your data loader code.
Granted, this can be alleviated by data loading tools that operate on meta data (they effectively have a
persistence layer for structured technology). Second, your data loader is likely implementing a significant
portion of the logic that is already encapsulated in your business objects. Y our business objects will not be
coded to fix problemsin the legacy source data, but they will be coded to ensure consistency of your
objects, including all referentia integrity issues. The bottom line is that with this approach you are
programming alot of basic behavior in two places: in your business layer where it belongs and in your data
loader where it does not. There hasto be a better way.

7.2 Architected Data Loading

Figure 15 depicts an approach to data loading that is more in line with the needs of object devel opment.
The data loader application itself will be made up of a collection of classes. First, there may be several user
interface classes, perhaps an administration screen for running the data load and alog display screen.
Second, there will be a collection of business classes specific to the data loader, classes which encapsulate
the data cleansing logic specific to the source data. Y ou don’t want thisin your normal business classes
because at some point your legacy source datais likely to go away and be replaced by the new and
improved target data. There will also be classes that encapsulate the data load process logic itself, using the
data load business classes to read the incoming data and then to create the “real” business objects for your
application based on that data. If you are not doing a complete refresh of the target data you will need to
first read the existing objects into memory, update them based on the source data, and then write them back
out.

Copyright 1997-2005 Scott W. Ambler

23

Data Application
Loader Ul Ul
| | ;> Data Flow
A4 4
Data Loader Business/
: > Message Flow
Classes Domain Classes J
[[]

Ve v

Persistence

Layer
35
Source Target
Data Data

Figure 15. An architected approach to loading data.

There are two interesting points to be made about Figure 15. First, notice how your “data loader code”
never directly accesses the source data— it goes through the persistence layer to get at the data. Second, the
dataloader code could easily be removed without affecting the applications and business classes, in other
words the applications don’t know and don’t care about the source of the data that they manipulate.

There are several advantages to this approach:

? Thedataloader logic is decoupled from the schema for the target data, allowing you to update the
target schema as needed by your business applications without requiring an update to your data loader.

? Key businesslogic is encapsulated in the business classes of your application, exactly where it belongs,
enabling you to code it one place.

? Datacleansing logic is encapsulated in the business classes of your data loader, exactly where it
belongs, enabling you to code it in one place.

There is one disadvantage to this approach: expensive data loading tools that your organization has
purchased are likely not able to work within this architecture, likely based on the ancient/legacy approach of
Figure 14, causing political problems for the users of those tools.

8. Supporting the Persistence Layer

How do you support this persistence layer within your organization? First, you need to develop an
administration system that provides the ability to maintain instances of the mapping classes. This
administration system would be updated by your persistence modelers responsible for developing and
maintaining your persistence schema, and by your |ead devel opers responsible for maintaining the object
schema of your applications. Y ou may aso choose to add a cache to your persistence layer to improveits
performance.

Copyright 1997-2005 Scott W. Ambler

24

To support the persistence layer an administration application needs to be built to maintain the instances of
the ClassM ap classes, as shown in Figure 16. These objects encapsulate the behavior needed to map
objects into the persistence mechanism, including the complex relationships between the objects that make
up your application, and form the information that is stored in the data dictionary for your application. This
isthe secret to a successful persistence layer: the objects stored in the data dictionary provide the behaviors
needed to map objects into the persistence mechanism(s) where they are stored. When the design of your
application or persistence mechanism schema changes you merely have to update the mapping objects
within your data dictionary, you do not have to update your application source code.

Persistence

L ayer

Administration
Application
Data Dictionary
Persistence
L ayer
Y our

Application(s)

Persistence
M echanism(s)

Figure 16. How the persistence mechanism works.

This approach to persistence effectively allows your database administrators (DBAS) Robust

to do what they do best, administer databases, without forcing them to worry about persistence layers
what their changes will do to existing applications. Aslong asthey keep the data protect

dictionary up-to-date they can make whatever changes they need to make to the application
persistence mechanism schema. Similarly, application programmers can refactor their developersfrom
objects without having to worry about updating the persistence mechanism schema changes made by
because they can map the new versions of their classes to the existing schema. database
Naturally when new classes or attributes are added or removed to/from an application ~ administrators
there will be aneed for similar changes within the persi stence mechanism schema. and vice versa.

Copyright 1997-2005 Scott W. Ambler

25

9. Summary

The purpose of this white paper was to present aworkable design for arobust persistence layer, adesign
proven in practice to work. It is possible for object-oriented applications to use relational databases as
persistence mechanisms without requiring the use of embedded SQL in your application code which couples
your object schema to your data schema. Technologies such as Java Database Connectivity (JDBC) and
Microsoft’s ActiveX Database Connectivity (ADO) can be wrapped using the design presented in this white
paper, avoiding the inherent brittleness of applications whose design gives little thought to the maintenance
and administration issues associated with persistence mechanisms. Persistence within object-oriented
applications can be easy, but only if you choose to make it so.

10. About the Author

Scott W. Ambler is asenior consultant with Ambysoft Inc. Scott is the author of several books, including
The Object Primer 3" Edition (2004), Agile Database Techniques (2003), and Agile Modeling (2002). He
has worked with OO technology since 1990 in various roles: Process Mentor, Business Architect, System
Analyst, System Designer, Project Manager, Smalltalk Programmer, Java Programmer, and C++
Programmer. He has also been active in education and training as both aformal trainer and as an object
mentor. Scott is a contributing editor with Software Development (www.sdmagazine.com). His home page
is www.ambysoft.com/scottAmbler.html.

Copyright 1997-2005 Scott W. Ambler

26

11. References and Recommended Reading

Ambler, SW. (1998a). Building Object Applications That Work — Your Step-by-Sep Handbook for
Developing Robust Systems With Object Technology. New Y ork: SIGS Books/Cambridge University Press.
http://www.ambysoft.com/buil dingObjectA pplications.html

Ambler, S. W. (1998b). Process Patterns: Delivering Large-Scale Systems Using Object Technology.
New York: SIGS Books/Cambridge University Press. http://www.ambysoft.com/processPatterns.html

Ambler, SW. (1998c). Mapping Objects To Relational Databases. An AmbySoft Inc. White Paper.
http://www.ambysoft.com/essays/mappingObj ects.html

Ambler, SW. (1998d). Persistence Layer Requirements, Software Development, January 1998, p70-71.
Ambler, SW. (1998¢€). Robust Persistence Layers, Software Development, February 1998, p73-75.

Ambler, SW. (1998f). Designing a Persistence Layer (Part 3 of 4), Software Development, March 1998,
p68-72.

Ambler, SW. (1998g). Designing a Robust Persistence Layer (Part 4 of 4), Software Development, April
1998, p73-75.

Ambler, SW. (1998h). Implementing an Object-Oriented Order Screen, Software Development, June
1998, p69-72.

Ambler, SW. & Constantine, L.L. (2000a). The Unified Process Inception Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/inceptionPhase.html.

Ambler, SW. & Constantine, L.L. (2000b). The Unified Process Elaboration Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/el aborationPhase.html .

Ambler, SW. & Constantine, L.L. (2000c). The Unified Process Construction Phase. Gilroy, CA: CMP
Books. http://www.ambysoft.com/constructionPhase.html.

Ambler, SW. (2004). The Object Primer 3rd Edition: Agile Model Driven Development With UML 2.
New Y ork: Cambridge University Press. http://www.ambysoft.com/theObjectPrimer.html.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). A Systems of Patterns:
Pattern-Oriented Software Architecture. New Y ork: John Wiley & Sons Ltd.

Copyright 1997-2005 Scott W. Ambler

Index
A
Accessor Methods.........ooeveeereriecieresere e 1
Administration application............cccccoererennene 23
ALLHDULEMED ... 16
B
Buy vS. build.......ccoeeveee e 19
C
CHt s 5,20
ClassMapcoeieeree e 16
Class-type architecture...........cocoeoeeeeienenenenenns 3
Client/server (C/S) architecture
and class-type architecture...........cccccoeeeenee 4
CONCUITENCY...cveeieeee ettt 19
CONNECHTION....ceieiceieeeie e 6
Controller/process layercoceeeeeeeerenenennns 4
CUSON .ttt 6,9, 12
D
Dataloading........ccceeeverereseseneeiesese e seeeees 21
Database administrators (DBAS)cccccevvveneene. 7
DeleteCriteria.......oovmrrinreeereeeseeees 11
DESIgN OVEINVIEW ... 8
Development schedule.........ccovvveceevenernnennee, 21
Domain/business layerccccvveeveveecenesieneenn 4
E
Encapsulation..........cccoeeeieieneniceeeee e 5
EXteNSIDilitycceeeeeee e 6
F
Feasibility study........cccooevvvvvnineeerere e 19
H
HIGH/LOW approachcccooeeieieeieinnen 9
J
JAVA. ..ot 5,20
Java Database Connectivity (JDBQC).................. 7
L
[0 (] o PSSO 19
OPLIMISHIC ..t 19

27

PESSIMISHIC...veveieeeierieee e 19
M
Modeling pattern

JAYEN e 3
O
OID e 6,9
Open Database Connectivity (ODBC)............... 7
Optimistic 10CKING.......cceverererirereeee e 19
P
Persistence layerccoooeeveeeieieceneeeeee e, 4
PersistenceBrokerccccoveveeveeieciecie e, 14
PersistenceMechanism............cccccovveeiienieennen. 15
PersistentCriteria.........cccceeveeveeiecieciecee e, 10
PersistentObjectccoeveeeverreieieeeeeeee e, 9
PersistentTransaction..........ccccccoveeeeieceecieenen, 13
Pessimistic 10cKing........cooceoevereiiiiieeeeee 19
PrOXY . .oeoeeeee e 6
Proxy AttributeMapcceoereneieieeeeeeeee 17
R
RECOI......coiieiiiiie e 6
Referential integritycceeevevievievvsesceeenns 22
REFIECHION. ... 20
RelationalDatabaseccccevvevrenerenieneeesienenns 15
REQUIrEMENtS.......cceveeeceeeceee e 5
RetrieveCriteria........oovvivereererecere e 11
S
SMaAltalK ..o 5,20
SOISEAEMENt ..o 18
Structured Query Language (SQL)cceoveveennen. 1
T
TranSaCtionccoeveeeveneeireneese e 59
U
UniDirectionAssociationMapcceeeeeeeeeenne 17
Unified Modeling Language (UML).................. 1
UpdateCriteriaL.....ccouvereereeeereere e 11
User-interface layer.......ooooeeeiiiiincieeee, 3

Copyright 1997-2005 Scott W. Ambler

