

Artificial Intelligence
and Agile Software

Development:
Use Cases for AI-Augmentation

By Scott W. Ambler

https://ScottAmbler.com

Copyright Ó Ambysoft Inc. All Rights Reserved

1

Since the release of ChatGPT 3.5 in November 2022 artificial intelligence (AI) has taken the
world by storm. Since then, dozens of platforms, and thousands of tools, based on AI have
been released. Many of these tools are focused on augmenting (enhancing), and
potentially replacing, the activities of software developers. This white paper examines how
AI augmentation impacts agile software development.

This white paper explores the following topics:

1. Why should you listen to me?
2. AI in software development: What I would do
3. AI in software development: What I wouldn’t do
4. Valid use cases for AI-augmentation in software development
5. Putting the AI-augmentation use cases into context
6. AI tooling for agile software development
7. AI through the agile lifecycle
8. AI and DevOps
9. My concerns about AI and agile software development
10. The future of AI and agile software development

Why Should You Listen to Me?
You likely know me as the person behind the Agile Modeling [1] and Agile Data [2] methods,
or the co-creator with Mark Lines of the Disciplined Agile (DA) tool kit [3]. I’ve done other
work in the agile space over the years, but those are the highlights. In short, I have a
pragmatic understanding of agile software development. Furthermore, during 2023 and
2024 I earned a Master of Science Degree in Artificial Intelligence from the University of
Leeds. I was able to leverage my data and information science experience, which goes
back to the late 1980s, while working on this new credential. In short, I have a decent
understanding of AI too.

AI in Software Development: What I Would Do
In general, here is how I recommend you apply AI in software development:

1. Augment people, don’t replace them. Your goal should be to augment what you,
and your teammates do, not to replace people. You want to use AI to perform some
of your existing work and thereby free you up for other, more rewarding things.

2. Augment only the activities we understand. This is a critical point. Because you
shouldn’t trust what an AI produces, discussed later, you need to have the
background to determine the quality of whatever the AI does. Furthermore, you
need to understand how everything fits together and when you can safely apply AI in
the overall process.

3. Improve the quality of what people produce. Many people will create a text-based
thing, perhaps source code or written prose, and then submit it to a large-language
model (LLM) such as OpenAI’s ChatGPT or Google’s Gemini and ask it to improve

Copyright Ó Ambysoft Inc. All Rights Reserved

2

their work. For example, I will often write a few lines of code, realize that it could very
likely be cleaner, so I submit it to Bing and ask for a better version. Given that I’m
currently working in Python, my prompt is often along the lines of “Please produce a
pythonic version of [MY CODE]”.

4. Reduce repetitive work. AI can and should be used to automate repetitive,
predictable work. For example, in software development a common need is to
analyze code to identify potential security flaws in it. That’s hard enough with a few
hundred lines of code, let alone thousands or millions of lines. An AI won’t get bored
while it systematically pores through your code.

5. Work in small increments. LLMs are good at working on small problems as the
bigger and more ambiguous the problem the greater the room for questionable
hallucinations. Ask an LLM to write a function, not an entire class. Ask it to write a
few paragraphs, not an entire section of a document. Iteratively ask the LLM to do a
bit of work, improve upon it until it’s acceptable, then move on to the next bit of
work.

6. Recognize that it’s about more than just LLMs. LLMs are only one of dozens of
categories of AI models, albeit a category that is easy to work with and readily
available. The point is that there are many great AI-based software development
tools, some based on LLMs and some on other strategies, available to you. I’ll go
into this in more detail in the next article in this series.

AI in Software Development: What I Wouldn’t Do
I’m also seeing inappropriate applications of AI in software development, or anti-patterns if
you like. Here’s what I wouldn’t do:

1. Trust anything generated by an AI. Regardless of what you may have heard, large
language models (LLMs) hallucinate exactly 100% of the time [4]. The issue is the
quality of the hallucination, which can range from pretty darn good to complete
rubbish. You might use AI to generate a first draft of something, but you need
humans in the loop to ensure that what is produced meets the actual needs of your
context.

2. Visualize processes/architectures/designs before implementation. When it
comes to software development, the “up front” activities around formulating
requirements and strategizing a potential architecture/design are best left to people.
Augment where you can, including brainstorming potential ideas, but leave
important decisions to people. Having said this, there are many good tools for
visualizing existing implementations to help you to understand the “as exists”
environment. More on this in the next article in this series.

3. Generate large swathes of code or documentation. The more code that you
generate, or the more documentation that you generate, at one time the greater the
chance that the quality of the hallucination (see point #1) is poor. As pointed out
earlier, iteratively generate artifacts such as code and documents a bit at a time.

4. Create “original” IP that you care about. First, anything that’s generated by AI is
not original. Second, when you ask an LLM to improve on your existing work, it isn’t

Copyright Ó Ambysoft Inc. All Rights Reserved

3

clear how original this work is any more. You did the actual thinking, the AI merely
suggested how to make it better. This is an incredibly slippery slope and you need to
decide where to draw the line. Third, recognize that not all IP is created equal. Do I
really care about a function that loops through some data? Likely not, as long as it’s
correct. Do I care about the overall system that I’m building that invokes that
function. Very likely. Once again, where you draw the line is up to you. And no, I did
not use AI to generate any of the text of this article although I did generate the image
using Google Gemini.

Valid Use-Cases for AI Augmentation in Software Development
What I believe to be the valid use cases for AI augmentation in software development are
summarized in Figure 1. There are several key features of Figure 1:

1. It’s a mapping, not a lifecycle. The diagram indicates the main categories of work
in software development and maps AI-augmentation use cases to them. Yes, it does
look a tad waterfallish but don’t get your agile knickers in a knot, in the next article I
will work through a lifecycle view.

2. It focuses on software development. I haven’t included all of the typical white-
collar worker use cases around writing reports or presentations, only the use cases
specific to software development.

3. The wording is key. It’s important to note how I’ve worded the use cases, using
terms like potential and suggest. This is because you need to “keep humans in the
loop”, working in such a way that a person validates the output of an AI, updates it
as appropriate, then commits it to your overall asset base. An implication of this is
that the human in the loop needs to be sukiciently competent to judge the AI’s
output. When the output of the AI is large the human in the loop may need to use
another AI-based tool to help them analyze the output of the first AI-based tool.

Copyright Ó Ambysoft Inc. All Rights Reserved

4

Figure 1. Potential opportunities for AI augmentation in software development.

Let’s consider each of these use cases one at a time. I describe each use case and suggest
tooling options that support them in the list below, and later in this article I discuss their
trade-oks. For most of the use cases there are many tooling options, I’m just suggesting a
few exemplars. You will still need to identify tools appropriate for your environment. If I’ve
missed your favorite tool and you’d like to share that with others, please feel free to add a

Copyright Ó Ambysoft Inc. All Rights Reserved

5

comment to this article. However, please DO NOT reach out to me directly as I don’t want
to be inundated with demo okers. The AI-augmented software development use cases are:

1. Analyze existing implementation. Software developers often need to work with
existing, legacy code that they are unfamiliar with or in some cases have forgotten
about even though they wrote it. Tooling such as SonarQube and CAST SBOM
Manager help developers to navigate the complexities of existing implementations
and to better understand any technical debt that they face.

2. Brainstorm potential requirements. I often want to brainstorm requirements with
my stakeholders. We’ll do this for both potential high-level ideas during scoping as
well as later during construction to identify potential details. Asking an AI to suggest
ideas is like having another experienced voice in the room. Although large language
model (LLM) such as ChatGPT or Gemini will do, an LLM aggregator such as Poe
provides a flexible option.

3. Explain status and trends. For over a decade software teams have been using
dashboard technologies to monitor and report their progress. While this is a great
idea in theory, in practice it assumes that people understand the information that is
being presented to them. Good luck with that. Luckily AI-based tooling such as Qlik
Sense exist to explain the results of your analytics.

4. Generate potential code. I will often use an LLM such as Bing to suggest code
examples or improvements to a snippet of code that I’ve written. Many developers
will use editors such as Github Copilot, or plug-ins to their preferred IDE, that
ekectively pair program with you. Note that it isn’t just about application code. For
example, products like Harness.io create delivery scripts and Flow.bi for creating
DataVault2-compliant raw data vaults to enable continuous data warehousing [5].
And I need to give a shout out to Brave CodeLLM which does so privately and
provides explanations of the code that it produces.

5. Generate potential documentation. First and foremost, do your best to write
clean, literate code that requires minimal documentation. Second, you’re always
going to need some code documentation, particularly why you wrote what you did.
Where any LLM will do for this, there are products such as Mintlify that are
specifically built to generate documentation from your code.

6. Generate potential tests. It is possible, and mostly desirable, to generate tests (or
more accurately automate checks) from various artifacts. For example, you can
generate acceptance tests and quality of service (QoS) tests from requirement
descriptions. Unit and integration tests can be generated from existing code and
scripts. Furthermore, tooling such as TestRigor enables you to create acceptance
and UI-level integration tests from English prose.

7. Guesstimate schedule and budget. Like it or not, software developers are often
asked to provide schedule and cost estimates for the current release that they are
working on. Products like CostGPT step you through a series of relevant questions
and then produce the basis for a guesstimate.

8. Identify technical debt. Technical debt refers to quality issues within your system
infrastructure, potentially pertaining to architecture, design, or implementation.
Technical debt is mistakenly thought of as just a source code problem, but the

Copyright Ó Ambysoft Inc. All Rights Reserved

6

concept is also applicable to source data (this is referred to as data debt [6]) as well
as your validation assets. Tooling to analyze existing implementations (above) and
suggest potential quality improvements (below) ekectively identify existing
technical debt.

9. Suggest potential quality improvements. AI has been used for years to analyze
existing systems to identify potential opportunities to improve the quality (to pay
down technical debt). SonarQube, CAST SQG and BlackDuck’s Coverity Static
Analysis statically analyze existing code. Applitools Visual AI dynamically finds user
interface (UI) bugs and Veracode’s DAST to find runtime vulnerabilities in web apps.

10. Suggest potential strategies. Software developers can work with LLMs to suggest
potential architecture, technical design, and UI design strategies for what they’re
building. Modeling tool vendors are building copilot/advisor functionality into their
okerings as well.

11. Suggest potential WoW improvements. Ekective software developers choose to
improve their way of working (WoW) based on their learnings over time. Techniques
such as retrospectives can be used to identify and explore challenges that you’re
facing and even identify potential improvements. AI-based tooling such as Ekilix will
process transcripts from such discussions, transcripts which themselves can be
generated via AI-based tooling, to generate potential WoW improvements that your
team might choose to adopt. This enables your team to adopt a guided continuous
improvement (GCI) [3] strategy and your organization’s coaches and project
managers to extend their range.

12. Validate implementation. Many of us work in organizations that have common
guidelines and standards that we are expected to follow, and increasingly in
environments where regulatory compliance is required. Many of the products for
suggesting potential quality improvements are applicable for this. Furthermore,
products such as Compliance.ai can identify and help you to understand your
obligations under applicable regulations.

13. Visualize existing implementation. Software developers regularly work with legacy
implementations that they need to leverage and often evolve. This software is often
complex, using a myriad of technologies for reasons that have been forgotten over
time. Tools such as CAST Imaging visualizes existing code and ChartDB visualizes
legacy data schemas to provide a “birds-eye view” of the actual situation that you
face.

14. Visualize potential workflows. When software developers extend existing systems
they need to ensure that what they are doing fits into the existing workflow
appropriately. Visualization tools such as Decisions Process Mining analyze existing
systems and visualize the supported workflow. Existing workflow modeling tools are
also adding AI-based functionality to do the similar things.

Copyright Ó Ambysoft Inc. All Rights Reserved

7

Putting the AI-Augmentation Use Cases into Context
The use cases all make a lot of sense, but that doesn’t mean that all of them are applicable
to you, at least not right now, given whatever situation that you face. You want to adopt the
right strategies, and select the right tooling that supports those strategies, for you and your
team. Table 1 puts the AI-augmentation use cases into context by examining their
advantages and disadvantages.

Use Case Advantages Disadvantages
Analyze existing
implementation

• Enables developers to
navigate complexities
of legacy code.

• Pinpoints potential
problems in your
code.

• Thoroughness: The AI
is likely to perform a
more thorough job
than people would.

• Trustworthiness: The
AI is less likely to be
biased than
individuals in what it
produces.

• Accuracy risk:
Although AIs can
often be built with
greater accuracy than
people, they still
aren’t perfect, and
any results shouldn’t
be taken verbatim.

• Intellectual property
(IP) risk: Is the AI
retaining your IP after
use?

• Privacy risk: Are you
providing personal
identifying
information (PII) to
the AI?

Brainstorm
potential
requirements

• Provides input into
discussions with
stakeholders about
their requirements.

• Greater range: The AI
is likely trained on a
greater range of
examples and
contexts than that
experienced by the
people on your team,
potentially giving a
more robust result.

• Trustworthiness (see
above).

• Doesn’t remove the
need to work closely
with stakeholders to
understand their
actual needs.

• The AI isn’t producing
unique ideas, merely
repeating what it has
seen before.

• IP risk (see above).

Explain status
and trends

• Increases the chance
that the users of data
products such as

• Unless the tooling is
specifically trained
for software

Copyright Ó Ambysoft Inc. All Rights Reserved

8

dashboards or
reports understand
the implications of
the information being
presented.

• Greater range (see
above).

• Thoroughness (see
above).

• Trustworthiness (see
above).

development
metrics, you will need
to invest time training
it.

• Accuracy risk (see
above).

• IP risk (see above).

Generate
potential code

• Increases the rate at
which code is written.

• Potential for
developers to
become proficient
with a language
quicker.

• Greater range (see
above).

• Doesn’t turn bad
programmers into
good ones.

• Code quality
decreases the more
code that is
generated at any one
time, so my
recommendation is
to incrementally
generate and validate
a few lines at a time.

• Accuracy risk (see
above).

• IP risk (see above).
Generate
potential
documentation

• Increased
documentation
accuracy when you
generate it just in time
(JIT), ideally when you
consider evolving
your implementation.

• Can generate
documentation for
regulatory
compliance
purposes.

• Thoroughness (see
above).

• Existing, “legacy”
documentation tends
to be out of sync with
the implementation.
You are generally
better ok writing
clean, literate code
that doesn’t require
documentation.

• The most important
thing to document is
why you did what you
did, something the AI
can’t generate.

• Accuracy risk (see
above).

• IP risk (see above).

Copyright Ó Ambysoft Inc. All Rights Reserved

9

• Privacy risk (see
above).

Generate
potential tests

• Can generate tests to
use as executable
specifications [7].

• Greater range (see
above).

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).

Guesstimate
schedule and
budget

• Likely to consider a
more comprehensive
range of issues than
people do.

• Automates
bureaucracy that
developers typically
don’t like nor are very
good at.

• Trustworthiness (see
above).

• Very dikicult to be
accurate because of
the bespoke nature of
requirements,
significant variation
in developer skills,
and evolution in
tooling and
technology.

• Accuracy risk (see
above).

• IP risk (see above).
Identify
technical debt

• Pinpoints aspects of
your implementation
that potentially
should be improved.

• Greater range (see
above).

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).

Suggest
potential
strategies

• Greater range (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).
Suggest
potential WoW
improvements

• Greater range (see
above).

• Thoroughness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).

Copyright Ó Ambysoft Inc. All Rights Reserved

10

• Trustworthiness (see
above).

• Privacy risk (see
above).

Suggest
potential
quality
improvements

• Greater range (see
above).

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).

Validate
implementation

• Greater range (see
above).

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).

Visualize
existing
implementation

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).
Visualize
potential
workflows

• Thoroughness (see
above).

• Trustworthiness (see
above).

• Accuracy risk (see
above).

• IP risk (see above).
• Privacy risk (see

above).
Table 1. Software development AI-augmentation use cases in context.

The fundamental challenge is that you need to be realistic about how AI can augment
software development. You still need humans in the loop that understand the part of the
software development process to validate the AI’s output. Furthermore, they need to be
able to integrate that output successfully into the overall whole. The smart strategy is to
work incrementally in small steps, ideally with active stakeholder participation [8] on a
regular basis.

AI Tooling and Agile Software Development
First, let’s begin with fundamental advice around AI tooling. In priority order, here is what I
recommend for agile software development:

1. Adopt AI tooling to enable people to focus on collaboration. A key aspect of agile
is on helping people work together more ekectively. The implication is that if AI
tooling is to support agile software development, it must either enable better
collaboration between people OR it must automate away mundane tasks and
thereby free up agile developers to focus on better collaborations.

Copyright Ó Ambysoft Inc. All Rights Reserved

11

2. Adopt task-specific tools. A task-specific tool does one thing well. For example, a
tool that helps my team to identify potential requirements for a data product is task
specific. A tool that brainstorms requirements for any type of domain is not task
specific. Task-specific tools tend to provide better results although require you to
adopt and then learn a greater number of tools. A great resource to help find AI-
based tools is the There Is An AI For That portal [9].

3. Adopt orchestration tools. You need a tool to string together your other tools into
your desired workflow. My recommendation is to keep this orchestration tooling
slim, plugging your other tools into it as appropriate, and avoid the “one-stop shop”
vision of large vendors.

4. Build a data vault for IT. Just like your business leaders need a source of high-
quality data to make data-informed decisions [10], so do your IT leaders. The
implication is that your organization needs a data vault [11], or a hand-jammed
equivalent (usually not a great idea), that captures intel from tools and systems
across the entire lifecycle from which to report from. Such a “data warehouse/lake
house/mesh/fabric” provides the key monitoring and governance benefits of ALM
without vendor lock in.

AI Throughout the Agile Lifecycle
Figure 2 maps the AI-augmentation uses cases described above to the phases of the agile
software development lifecycle [12]. Three important points about Figure 2:

1. It depicts explicit phases. Unlike what the agile purists want you to falsely believe,
agile software teams clearly go through phases [13] in their WoW.

2. Deployment should be an activity. Deployment is ideally a fully automated
activity, not a phase. Not every agile team has reached that level of sophistication
yet, unfortunately.

3. Operations is outside development. The lifecycle depicted in Figure 2 includes an
operations phase, making it more than just a development lifecycle. I do this to
make it easier to transition to a discussion of how things map to the DevOps
lifecycle in the next section.

Copyright Ó Ambysoft Inc. All Rights Reserved

12

Figure 2. Mapping AI use cases to the agile software development project lifecycle.

Just as your focus changes each phase, so does your usage of AI. During Initiation you’ll
mostly apply AI tooling to understand the context that you face, to generate ideas, and to
support planning at a high level. During Construction much of that continues, albeit now to
explore details rather than high-level concepts, but because your focus is now on
producing a consumable solution you will adopt many technically oriented AI tools.
Deployment is also supported by technically oriented tooling, although frankly the DevOps
folks have already done all the heavy lifting in this space years ago. Finally, any AI-
augmentation for Operations tends to be on more sophisticated monitoring, particularly
around security concerns.

Let’s take a more detailed look at Figure 2 a phase a time:

1. Initiation. The Initiation phase is sometimes called Sprint 0, Inception, Envision,
Ideation, or Start Up. Your goal is to get going in the right direction by coming to an
agreement around what you’re going to do and how you’re going to do it. This
requires close collaboration between your team, which is likely still in the process of
forming during this period, and your stakeholders (a group that is also evolving). AI
can be used to augment the brainstorming of potential requirements, exploring your
existing technical environment, initial estimation, team planning, identifying
potential architectural strategies, and many more activities. Ekective initiation can
dramatically reduce the risk of your initiative by working through important concerns
before jumping into Construction, but can increase risk if this phase stretches on
too long or goes into too much detail [14]. AI tooling okers the potential to stream
initiation activities. The focus of AI-augmentation during Initiation is focused on

Copyright Ó Ambysoft Inc. All Rights Reserved

13

understanding the context that your team faces, idea generation, and planning
support. All of this is performed at a high level, the details will come during
Construction.

2. Construction. During the Construction phase - sometimes called Development,
Engineering, or Implementation - your goal is to produce a potentially consumable
solution [3] for your stakeholders. Agile teams typically organize Construction into
short timeboxes called sprints or iterations, whereas lean or DevOps teams works in
a more continuous manner. AI tooling can be applied for all sorts of technical tasks,
freeing developers to focus on understanding the true needs of their stakeholders.
Although most AI-augmentation during Construction automates technical tasks, the
idea generation and context exploration that was critical during Initiation remains
important because now you’re dealing with the details.

3. Deployment. During the Deployment phase – sometimes called Release,
Installation, Transition, Ship, or mistakenly “the hardening sprint” – your goal is to
release your solution into production. Earlier I pointed out that deployment is
hopefully a fully automated activity rather than a multi-day phase. Classic DevOps
tooling for continuous integration (CI), automated testing, and continuous
deployment (CD) do most of the heavy lifting here. AI is being leveraged in testing
and validation tooling to improve the quality checking that occurs before
deployment. After deployment, assuming you keep your team together, you go back
and continue with more construction work.

4. Operations. During the Operations phase - sometimes called Production, Usage, or
Run - your goal is to operate and support your solution in your production
environment. Operations is outside the scope of the agile software development
lifecycle, but it is an important aspect of the DevOps lifecycle and certainly
something that mature developers concern themselves with. AI augmentation is
commonly used by operations teams to interpret events as they occur in real time,
particularly around security threats and operational outages. Important stuk for
operations professionals, and also for anyone in a product-oriented role, such as a
product manager.

AI and DevOps
I would be remiss if I didn’t perform the same mapping for a continuous lifecycle that I did
above for the project-based lifecycle of Figure 2. Figure 3 depicts such a mapping. The
detailed explanation for this lifecycle is like that for the agile project lifecycle provided
above, albeit organized by activity (envision, implement, …) rather than phase. I believe it’s
obvious, but if there’s demand for such an explanation then I’m happy to add a fourth
article to the series. Feel free to add your thoughts to the comments section.

Copyright Ó Ambysoft Inc. All Rights Reserved

14

Figure 3. Mapping AI use cases to a continuous DevOps lifecycle.

My Concerns About AI and Agile Software Development
As Robert Heinlein was wont to say “there ain’t no such thing as a free lunch”, or TANSTAFL
for short. There are several significant concerns regarding AI for software development that
you need to be aware of:

1. AI lacks an understanding of your context. Important aspects of your
organizational context include your values, your priorities, your desired direction,
your guidelines, your preferred ways of working (WoW), and so on. You can certainly
address these issues via strategies such as retrieval augmented generation (RAG),
but it takes investment to do so. Does your organization understand and accept
this?

2. Your organization needs to work through the long-term implications. The
unconstrained use of AI in software development runs the risk of creating
exponentially more technical debt. If you apply AI in the hopes of reducing IT stak,
are you prepared to lose that organizational knowledge? Will you be able to easily
and safely update AI-generated software when your stakeholder needs change?

3. Your leadership may have unrealistic expectations. Has real, and coherent,
strategy work taken place around the application of AI within your organization? If
not, then leadership may mistakenly believe one or more of the following: They

Copyright Ó Ambysoft Inc. All Rights Reserved

15

won’t need software developers anymore; any software developers they do hire can
be lower skilled and thus cheaper; or AI can perform all aspects of software
development. If any of those beliefs are prevalent within your organizational
leadership then consider them very serious red flags. You may want to reach out to
me to discuss the possibility of me facilitating a strategy workshop to help to get you
on a better trajectory.

4. Intellectual property (IP) rights are still being worked out. We’re currently in the
wild west phase of AI, and will be for several more years, but eventually the adults in
the room will get things worked out. The issue is that large language models (LLMs),
which many AI tools are based on, were often trained on material that the model
vendors don’t own the IP rights to. There could be serious legal implications from
using that ill-gotten IP to generate what you believe to be your IP just a few years
down the road. Does your organization understand and accept this risk?

The Future of AI and Agile Software Development
Looking into my crystal ball, here’s what I see for AI and agile software development:

1. AI is here to stay. The AI tooling available right now is freaking amazing and it’s only
going to get better. Strap in, it’s going to be a heck of a ride for the rest of the decade.

2. We’ll always need software developers. AI is going to reduce the need for
developers, but that need will never drop to zero. AI isn’t going to put you out of a
software development job, someone else using AI will.

3. Higher-level skills will be critical. The tasks being automated are those that are
repetitive and onerous in nature, and that’s mostly technical stuk. Higher-level
tasks, those that require experience, knowledge, and often “people skills”, are being
augmented but not fully automated. This includes business analysis, architecture,
design, exploratory testing, and team management activities. The days of getting by
with a two-day agile certification are long gone and frankly should never have
existed.

4. People skills will be important, but not su_icient. In point #3 I described the need
for experience, knowledge, and people skills. It wasn’t just people skills, and people
skills wasn’t at the top of the list. You must have a solid understanding of the
implications of what the AI tooling is doing for you, otherwise it will be doing it to
you. A fool with an AI tool is still a fool.

5. Domain knowledge will be critical. Always was, always will be.

Finally, some advice for tool vendors, until now the unsung heroes of my story. My advice to
tool vendors is to build great tools that are easy to integrate with other great tools. Focus
on addressing a specific niche and on ease of integration into tool chains. Having worked
for and with tool vendors throughout my career, my experience is that just as software
developers must work collaboratively to succeed, so most tool vendors.

Copyright Ó Ambysoft Inc. All Rights Reserved

16

References
1. The Agile Modeling site. https://AgileModeling.com/
2. The Agile Data site. https://AgileData.org
3. Ambler, S.W. and Lines, M. (2022). Choose Your WoW! A Disciplined Agile Approach

to Optimizing Your Way of Working – Second Edition. PMI Press.
https://scottambler.com/choose-your-wow-2-e/

4. Ambler, S.W. (2024). Large Language Models (LLMs) Hallucinate 100% of the Time.
https://scottambler.com/choose-your-wow-2-e/

5. Ambler, S.W. (2017). Continuous Data Warehousing: A Disciplined Approach.
https://agiledata.org/essays/disciplinedAgileDW.html

6. Ambler, S.W. (2008). Data Debt: Understanding Enterprise Data Quality Problems.
https://agiledata.org/essays/dataTechnicalDebt.html

7. Ambler, S.W. (2004). Executable Specifications: An Agile Core Practice.
https://agilemodeling.com/essays/executablespecifications.htm

8. Ambler, S.W. (2002). Active Stakeholder Participation: An Agile Core Practice.
https://agilemodeling.com/essays/activestakeholderparticipation.htm

9. There’s An AI For That. https://theresanaiforthat.com/
10. Ambler, S.W. (2024). Systems are Data Driven, People are Data Informed.

https://scottambler.com/data_driven_vs_data_informed/
11. Data Vault Alliance site. https://datavaultalliance.com/
12. Ambler, S.W. (2007). The Agile System Development Lifecycle (SDLC).

https://ambysoft.com/essays/agileLifecycle.html
13. Ambler, S.W. (2010). Agile Phases? Yes, Agile Lifecycles Have Phases.

https://ambysoft.com/essays/agilelifecyclephases.html
14. Ambler, S.W. (2002). Big Modeling Up Front (BMUF) Anti-Pattern.

https://agilemodeling.com/essays/bmuf.htm

Copyright Ó Ambysoft Inc. All Rights Reserved

17

More About Me
I have other writings about AI in my blog on ScottAmbler.com and writings about software
development at Ambysoft.com. In my consulting practice I focus on helping teams and
organizations to improve their ways of working (WoW) and ways of thinking (WoT),
particularly around data activities that are critical for AI/ML development. I also give
presentations at conferences, to user groups, and to teams within organizations about a
range of topics, including this one.

I freely share a lot of ideas and information at the following sites:

AgileData.org

AgileModeling.com

Ambysoft.com

ScottAmbler.com

